Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (9): 1022-1028.DOI: 10.15541/jim20180143
• Orginal Article • Previous Articles Next Articles
LIU Huan-Long1, 2, ZHAO Wei2, LI Rui-Zhe2, HUANG Xie-Yi2, TANG Yu-Feng2, LI Dong-Mei1, HUANG Fu-Qiang2, 3
Received:
2018-04-03
Revised:
2018-05-01
Published:
2018-09-20
Online:
2018-08-14
About author:
LIU Huan-Long (1990-), male, candidate of Master degree. E-mail: huanlongliu@outlook.com
Supported by:
CLC Number:
LIU Huan-Long, ZHAO Wei, LI Rui-Zhe, HUANG Xie-Yi, TANG Yu-Feng, LI Dong-Mei, HUANG Fu-Qiang. Facile Synthesis of Reduced Graphene Oxide In-situ Wrapped MnTiO3 Nanoparticles for Excellent Lithium Storage[J]. Journal of Inorganic Materials, 2018, 33(9): 1022-1028.
Fig. 1 (a) SEM image with inset showing the optical photograph of MnTiO3@rGO powder, (b) TEM image, (c) HRTEM image, and (d) SAED pattern, (e) high-angle annular dark field (HAADF) of MnTiO3@rGO, and EDS mapping of C, Mn, Ti, and O elements which indicates uniformly elemental distribution in the MnTiO3@rGO
Materials | C/wt% | O/wt% | Ti/wt% | Mn/wt% |
---|---|---|---|---|
MnTiO3@rGO | 9.01 | 18.87 | 32.11 | 40.01 |
Table 1 EDS data of MnTiO3@rGO
Materials | C/wt% | O/wt% | Ti/wt% | Mn/wt% |
---|---|---|---|---|
MnTiO3@rGO | 9.01 | 18.87 | 32.11 | 40.01 |
Fig. 2 (a) XRD patterns, (b) Raman spectra in the range of 100-2000 cm-1, (c) nitrogen sorption isotherms and corresponding pore size distribution curves (inset), and (d) electrical conductivity of as-obtained materials
Fig. 3 Electrochemical measurements of samples(a) CV curves of MnTiO3@rGO electrode; (b) Comparison of the specific capacity at different rates; (c) Cycling performance at 0.5 A·g-1 between MnTiO3@rGO, rGO and MnTiO3 electrodes; (d) Nyquist plots of electrodes of MnTiO3@rGO and MnTiO3 after 3 cyclingAll of the measurements were conducted using a voltage window of 0.01 V-3.0 V
[1] | KANG D, LIU Q, SI R,et al. Crosslinking-derived MnO/carbon hybrid with ultrasmall nanoparticles for increasing lithium storage capacity during cycling. Carbon, 2016, 99: 138-147. |
[2] | JIANG Y, ZHANG D, LI Y,et al. Amorphous Fe2O3 as a high- capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014, 4: 23-30. |
[3] | PETNIKOTA S, MARKA S K, BANERJEE A,et al. Graphenothermal reduction synthesis of ‘exfoliated graphene oxide/iron (II) oxide’ composite for anode application in lithium ion batteries. Journal of Power Sources, 2015, 293: 253-263. |
[4] | DO J S, WENG C H.Preparation and characterization of CoO used as anodic material of lithium battery.Journal of Power Sources, 2005, 146(1): 482-486. |
[5] | VARGHESE B, REDDY M V, YANWU Z,et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials, 2008, 20(10): 3360-3367. |
[6] | LI B, HAO W, WEN X G.Semi-hollow/solid ZnMn2O4 microspheres: synthesis and performance in Li ion battery.Journal of Inorganic Materials, 2018, 33(3): 307-312. |
[7] | CAI J X, LI Z P, LI W,et al. Synthesis and electrochemical performance of Fe2O3 nanofibers as anode materials for LIBs. Journal of Inorganic Materials, 2018, 33(3): 301-306. |
[8] | LIU S Y, XU L, CHEN X,et al. Cluster structural CoFe2O4 particles loaded onto graphene and its Li-storage performance. Journal of Inorganic Materials, 2017, 32(9): 904-908. |
[9] | GUO Y G, HU J S, WAN L J.Nanostructured materials for electrochemical energy conversion and storage devices.Advanced Materials, 2008, 20(15): 2878-2887. |
[10] | KIM A, PARK E, LEE H,et al. Highly reversible insertion of lithium into MoO2 as an anode material for lithium ion battery. Journal of Alloys and Compounds, 2016, 681: 301-306. |
[11] | YAO Y, MCDOWELL M T, RYU I,et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2011, 11(7): 2949-2954. |
[12] | CUI L F, RUFFO R, CH C K,et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Letters, 2009, 9(1): 491-495. |
[13] | GUAN C, SUMBOJA A, WU H, et al. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Advanced Materials, 2017, 29(44): 1704117-1-9. |
[14] | HASSOUN J, DERRIEN G, PANERO S,et al. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Advanced Materials, 2008, 20(16): 3169-3175. |
[15] | LIAO L X, WANG M, FANG T,et al. Synthesis and characterization of ZnFe2O4 anode for lithium ion battery. Journal of Inorganic Materials, 2016, 31(1): 34-38. |
[16] | WANG Y P, LIU J J, LIU C X,et al. Morphology-controlled synthesis of hollow core-shell structural alpha-MoO3-SnO2 with superior lithium storage. Journal of Inorganic Materials, 2015, 30(9): 919-924. |
[17] | WANG Y G, CHENG L, XIA Y Y.Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution.Journal of Power Sources, 2006, 153(1): 191-196. |
[18] | HAO Y, QIAN M, XU J,et al. Porous cotton-derived carbon: synthesis, microstructure and supercapacitive performance. Journal of Inorganic Materials, 2018, 33(1): 93-99. |
[19] | WANG B, XIN H, LI X,et al. Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Scientific Reports, 2014, 4: 3729. |
[20] | XU J, DONG W, SONG C,et al. Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage. Journal of Materials Chemistry A, 2016, 4(40): 15698-15704. |
[21] | TAN X, CUI C, WU S,et al. Nitrogen-doped mesoporous carbon- encapsulated MoO2 nanobelts as a high-capacity and stable host for lithium-ion storage. Chemistry, an Asian Journal, 2017, 12(1): 36-40. |
[22] | HOLZAPFEL M, BUQA H, SCHEIFELE W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chemical Communications, 2005(12): 1566-1568. |
[23] | LI J, ZHANG L, ZHANG L,et al. In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. Journal of Power Sources, 2014, 249: 311-319. |
[24] | LI W, ZHANG Y J, WANG X P,et al. Synthesis and electrochemical performance of LiMn0.6Fe0.4PO4/C cathode for lithium- ion batteries. Journal of Inorganic Materials, 2017, 32(5): 476-482. |
[25] | YANG T, LI X, TIAN X D,et al. Preparation and electrochemical performance of Si@C/SiOx as anode material for lithium-ion batteries. Journal of Inorganic Materials, 2017, 32(7): 699-704. |
[26] | LIANG P, XING S, SHU H B,et al. Analogous three-dimensional MoS2/graphene composites for reversible Li storage. Journal of Inorganic Materials, 2016, 31(6): 575-580. |
[27] | XU J, DING W, ZHAO W,et al. In situ growth enabling ideal graphene encapsulation upon mesocrystalline MTiO3(M = Ni, Co, Fe) nanorods for stable lithium storage. ACS Energy Letters, 2017, 2(3): 659-663. |
[28] | GEIM A, KNOVOSELOV K S.The rise of graphene.Nature Materials, 2007, 6: 183-191. |
[29] | EDA G, FANCHINI G, CHHOWALLA M.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.Nature Nanotechnology, 2008, 3: 270-274. |
[30] | ZHU X, ZHU Y, MURALI S,et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano, 2011, 5(4): 3333-3338. |
[31] | YUAN T, JIANG Y, SUN W,et al. Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh- rate lithium storage. Advanced Functional Materials, 2016, 26(13): 2198-2206. |
[32] | BAI X, LI T, ZHAO X Y,et al. Al2O3-modified Ti-Mn-O nanocomposite coated with nitrogen-doped carbon as anode material for high power lithium-ion battery. RSC Advances, 2016, 6(47): 40953-40961. |
[33] | GUO S, LIU J, QIU S,et al. Porous ternary TiO2/MnTiO3@C hybrid microspheres as anode materials with enhanced electrochemical performances. Journal of Materials Chemistry A, 2015, 3(47): 23895-23904. |
[34] | YANG L, ZHANG X, LI Y,et al. Graphene-encapsulated Li2MnTi3O8 nanoparticles as a high rate anode material for lithium- ion batteries. Electrochimica Acta, 2015, 155: 272-278. |
[35] | LIU Z, TANG Y F, LIN T Q,et al. Preparation and characterization of graphene-MoS2 composite anode materials. Journal of Inorganic Materials, 2016, 31(4): 345-350. |
[1] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[4] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[5] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[6] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[7] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[11] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[12] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[13] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[14] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[15] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||