Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (9): 1022-1028.DOI: 10.15541/jim20180143
• Orginal Article • Previous Articles Next Articles
LIU Huan-Long1, 2, ZHAO Wei2, LI Rui-Zhe2, HUANG Xie-Yi2, TANG Yu-Feng2, LI Dong-Mei1, HUANG Fu-Qiang2, 3
Received:
2018-04-03
Revised:
2018-05-01
Published:
2018-09-20
Online:
2018-08-14
About author:
LIU Huan-Long (1990-), male, candidate of Master degree. E-mail: huanlongliu@outlook.com
Supported by:
CLC Number:
LIU Huan-Long, ZHAO Wei, LI Rui-Zhe, HUANG Xie-Yi, TANG Yu-Feng, LI Dong-Mei, HUANG Fu-Qiang. Facile Synthesis of Reduced Graphene Oxide In-situ Wrapped MnTiO3 Nanoparticles for Excellent Lithium Storage[J]. Journal of Inorganic Materials, 2018, 33(9): 1022-1028.
Fig. 1 (a) SEM image with inset showing the optical photograph of MnTiO3@rGO powder, (b) TEM image, (c) HRTEM image, and (d) SAED pattern, (e) high-angle annular dark field (HAADF) of MnTiO3@rGO, and EDS mapping of C, Mn, Ti, and O elements which indicates uniformly elemental distribution in the MnTiO3@rGO
Materials | C/wt% | O/wt% | Ti/wt% | Mn/wt% |
---|---|---|---|---|
MnTiO3@rGO | 9.01 | 18.87 | 32.11 | 40.01 |
Table 1 EDS data of MnTiO3@rGO
Materials | C/wt% | O/wt% | Ti/wt% | Mn/wt% |
---|---|---|---|---|
MnTiO3@rGO | 9.01 | 18.87 | 32.11 | 40.01 |
Fig. 2 (a) XRD patterns, (b) Raman spectra in the range of 100-2000 cm-1, (c) nitrogen sorption isotherms and corresponding pore size distribution curves (inset), and (d) electrical conductivity of as-obtained materials
Fig. 3 Electrochemical measurements of samples(a) CV curves of MnTiO3@rGO electrode; (b) Comparison of the specific capacity at different rates; (c) Cycling performance at 0.5 A·g-1 between MnTiO3@rGO, rGO and MnTiO3 electrodes; (d) Nyquist plots of electrodes of MnTiO3@rGO and MnTiO3 after 3 cyclingAll of the measurements were conducted using a voltage window of 0.01 V-3.0 V
[1] | KANG D, LIU Q, SI R,et al. Crosslinking-derived MnO/carbon hybrid with ultrasmall nanoparticles for increasing lithium storage capacity during cycling. Carbon, 2016, 99: 138-147. |
[2] | JIANG Y, ZHANG D, LI Y,et al. Amorphous Fe2O3 as a high- capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014, 4: 23-30. |
[3] | PETNIKOTA S, MARKA S K, BANERJEE A,et al. Graphenothermal reduction synthesis of ‘exfoliated graphene oxide/iron (II) oxide’ composite for anode application in lithium ion batteries. Journal of Power Sources, 2015, 293: 253-263. |
[4] | DO J S, WENG C H.Preparation and characterization of CoO used as anodic material of lithium battery.Journal of Power Sources, 2005, 146(1): 482-486. |
[5] | VARGHESE B, REDDY M V, YANWU Z,et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials, 2008, 20(10): 3360-3367. |
[6] | LI B, HAO W, WEN X G.Semi-hollow/solid ZnMn2O4 microspheres: synthesis and performance in Li ion battery.Journal of Inorganic Materials, 2018, 33(3): 307-312. |
[7] | CAI J X, LI Z P, LI W,et al. Synthesis and electrochemical performance of Fe2O3 nanofibers as anode materials for LIBs. Journal of Inorganic Materials, 2018, 33(3): 301-306. |
[8] | LIU S Y, XU L, CHEN X,et al. Cluster structural CoFe2O4 particles loaded onto graphene and its Li-storage performance. Journal of Inorganic Materials, 2017, 32(9): 904-908. |
[9] | GUO Y G, HU J S, WAN L J.Nanostructured materials for electrochemical energy conversion and storage devices.Advanced Materials, 2008, 20(15): 2878-2887. |
[10] | KIM A, PARK E, LEE H,et al. Highly reversible insertion of lithium into MoO2 as an anode material for lithium ion battery. Journal of Alloys and Compounds, 2016, 681: 301-306. |
[11] | YAO Y, MCDOWELL M T, RYU I,et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2011, 11(7): 2949-2954. |
[12] | CUI L F, RUFFO R, CH C K,et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Letters, 2009, 9(1): 491-495. |
[13] | GUAN C, SUMBOJA A, WU H, et al. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Advanced Materials, 2017, 29(44): 1704117-1-9. |
[14] | HASSOUN J, DERRIEN G, PANERO S,et al. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Advanced Materials, 2008, 20(16): 3169-3175. |
[15] | LIAO L X, WANG M, FANG T,et al. Synthesis and characterization of ZnFe2O4 anode for lithium ion battery. Journal of Inorganic Materials, 2016, 31(1): 34-38. |
[16] | WANG Y P, LIU J J, LIU C X,et al. Morphology-controlled synthesis of hollow core-shell structural alpha-MoO3-SnO2 with superior lithium storage. Journal of Inorganic Materials, 2015, 30(9): 919-924. |
[17] | WANG Y G, CHENG L, XIA Y Y.Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution.Journal of Power Sources, 2006, 153(1): 191-196. |
[18] | HAO Y, QIAN M, XU J,et al. Porous cotton-derived carbon: synthesis, microstructure and supercapacitive performance. Journal of Inorganic Materials, 2018, 33(1): 93-99. |
[19] | WANG B, XIN H, LI X,et al. Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Scientific Reports, 2014, 4: 3729. |
[20] | XU J, DONG W, SONG C,et al. Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage. Journal of Materials Chemistry A, 2016, 4(40): 15698-15704. |
[21] | TAN X, CUI C, WU S,et al. Nitrogen-doped mesoporous carbon- encapsulated MoO2 nanobelts as a high-capacity and stable host for lithium-ion storage. Chemistry, an Asian Journal, 2017, 12(1): 36-40. |
[22] | HOLZAPFEL M, BUQA H, SCHEIFELE W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chemical Communications, 2005(12): 1566-1568. |
[23] | LI J, ZHANG L, ZHANG L,et al. In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. Journal of Power Sources, 2014, 249: 311-319. |
[24] | LI W, ZHANG Y J, WANG X P,et al. Synthesis and electrochemical performance of LiMn0.6Fe0.4PO4/C cathode for lithium- ion batteries. Journal of Inorganic Materials, 2017, 32(5): 476-482. |
[25] | YANG T, LI X, TIAN X D,et al. Preparation and electrochemical performance of Si@C/SiOx as anode material for lithium-ion batteries. Journal of Inorganic Materials, 2017, 32(7): 699-704. |
[26] | LIANG P, XING S, SHU H B,et al. Analogous three-dimensional MoS2/graphene composites for reversible Li storage. Journal of Inorganic Materials, 2016, 31(6): 575-580. |
[27] | XU J, DING W, ZHAO W,et al. In situ growth enabling ideal graphene encapsulation upon mesocrystalline MTiO3(M = Ni, Co, Fe) nanorods for stable lithium storage. ACS Energy Letters, 2017, 2(3): 659-663. |
[28] | GEIM A, KNOVOSELOV K S.The rise of graphene.Nature Materials, 2007, 6: 183-191. |
[29] | EDA G, FANCHINI G, CHHOWALLA M.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.Nature Nanotechnology, 2008, 3: 270-274. |
[30] | ZHU X, ZHU Y, MURALI S,et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano, 2011, 5(4): 3333-3338. |
[31] | YUAN T, JIANG Y, SUN W,et al. Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh- rate lithium storage. Advanced Functional Materials, 2016, 26(13): 2198-2206. |
[32] | BAI X, LI T, ZHAO X Y,et al. Al2O3-modified Ti-Mn-O nanocomposite coated with nitrogen-doped carbon as anode material for high power lithium-ion battery. RSC Advances, 2016, 6(47): 40953-40961. |
[33] | GUO S, LIU J, QIU S,et al. Porous ternary TiO2/MnTiO3@C hybrid microspheres as anode materials with enhanced electrochemical performances. Journal of Materials Chemistry A, 2015, 3(47): 23895-23904. |
[34] | YANG L, ZHANG X, LI Y,et al. Graphene-encapsulated Li2MnTi3O8 nanoparticles as a high rate anode material for lithium- ion batteries. Electrochimica Acta, 2015, 155: 272-278. |
[35] | LIU Z, TANG Y F, LIN T Q,et al. Preparation and characterization of graphene-MoS2 composite anode materials. Journal of Inorganic Materials, 2016, 31(4): 345-350. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||