Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (7): 711-720.DOI: 10.15541/jim20170421
Special Issue: 陶瓷基复合材料
• Orginal Article • Previous Articles Next Articles
LIU Hai-Tao1, YANG Ling-Wei2, HAN Shuang1
Received:
2017-08-30
Revised:
2017-10-26
Published:
2018-07-10
Online:
2018-06-19
Supported by:
CLC Number:
LIU Hai-Tao, YANG Ling-Wei, HAN Shuang. Research Progress on Micro-mechanical Property of Continuous Fiber-reinforced Ceramic Matrix Composites[J]. Journal of Inorganic Materials, 2018, 33(7): 711-720.
Fig. 1 (a) Young's modulus of the AS fiber in ASf/SiO2 composites prepared at different temperatures as a function of penetration depth; SPM images of the nanoindentation imprints of ASf/SiO2 composites fabricated at 600℃ (b) and 1200℃ (c)[10]
Fig. 4 (a) Schematic representation of the micro-cantilever bending geometry; SEM images of a micro-cantilever prepared from SiC matrix in SiCf/SiC composites before (a) and after (b) testing[11,18]
Fig. 6 Morphologies of the micropillars on individual SiC matrix and SiC fiber (a, b); Micropillar morphologies of SiC fiber and SiC matrix after pillar splitting tests(c, d); Representive force-displacement curves of SiC matrix and SiC fiber by the micropillar splitting tests (e); Evolution of localized fracture toughness of the SiC matrix and SiC fiber as a function of composite fabrication temperature(f)[28]
Fig. 8 (a) Schematic drawing of fiber push-out measurement; (b) Typical load-displacement push-out test curve; SEM images of the frontside surface (c) and backside surface (d) of SiCf/SiC minicomposite after fiber push-out test using a flat punch indenter[43]
Composites | Interphase | τ/MPa | Flexural strength/MPa | Fracture mode | Ref. |
---|---|---|---|---|---|
PIP 3D Cf/SiC | None | 105 | 23 | Brittle | [19] |
PyC | 30 | 378 | Toughened | ||
PIP 3D Nextel440 ASf/SiC | None | 293 | 45 | Brittle | [34] |
PyC | 42 | 163 | Toughened | ||
Sol-Gel 3D SiCf/Mullite | None | 537 | 230 | Brittle | [46] |
PyC | 155 | 35 | Toughened | ||
PIP 3D SiCf/SiC | None | 450 | 90 | Brittle | [28] |
BN | 50 | 200 | Toughened | ||
Sol-Gel 3D ALF ASf/SiO2(600℃) | None | 50 | 105 | Toughened | [10] |
Sol-Gel 3D ALF ASf/SiO2(1200℃) | None | 260 | 45 | Brittle |
Table 1 Interfacial bonding strength of typical CFRCMCs investigated in our research group
Composites | Interphase | τ/MPa | Flexural strength/MPa | Fracture mode | Ref. |
---|---|---|---|---|---|
PIP 3D Cf/SiC | None | 105 | 23 | Brittle | [19] |
PyC | 30 | 378 | Toughened | ||
PIP 3D Nextel440 ASf/SiC | None | 293 | 45 | Brittle | [34] |
PyC | 42 | 163 | Toughened | ||
Sol-Gel 3D SiCf/Mullite | None | 537 | 230 | Brittle | [46] |
PyC | 155 | 35 | Toughened | ||
PIP 3D SiCf/SiC | None | 450 | 90 | Brittle | [28] |
BN | 50 | 200 | Toughened | ||
Sol-Gel 3D ALF ASf/SiO2(600℃) | None | 50 | 105 | Toughened | [10] |
Sol-Gel 3D ALF ASf/SiO2(1200℃) | None | 260 | 45 | Brittle |
Composites | Em/GPa | Ef/GPa | Γm/(J·m-2) | Γf/(J·m-2) | EBN interphase/GPa | ΓBN interphase/(J·m-2) |
---|---|---|---|---|---|---|
SiCf/SiC (800℃) | 118 | 160 | 49 | 29 | - | - |
SiCf/SiC (900℃) | 170 | 160 | 15 | 29 | - | - |
SiCf/SiC (1000℃) | 256 | 160 | 5 | 29 | - | - |
SiCf/BN/SiC | - | 160 | - | 29 | 70 | 4 |
Table 2 Micro-mechanical parameters of SiCf/SiC and SiCf/BN/SiC composites investigated in Liu’s group[28]
Composites | Em/GPa | Ef/GPa | Γm/(J·m-2) | Γf/(J·m-2) | EBN interphase/GPa | ΓBN interphase/(J·m-2) |
---|---|---|---|---|---|---|
SiCf/SiC (800℃) | 118 | 160 | 49 | 29 | - | - |
SiCf/SiC (900℃) | 170 | 160 | 15 | 29 | - | - |
SiCf/SiC (1000℃) | 256 | 160 | 5 | 29 | - | - |
SiCf/BN/SiC | - | 160 | - | 29 | 70 | 4 |
[1] | 陈朝辉, 李伟, 王松, 等. 先驱体转化陶瓷基复合材料, 北京: 科学出版社, 2012. |
[2] | 张立同. 纤维增韧碳化硅陶瓷复合材料—模拟、表征与设计.北京: 化学工业出版社, 2009. |
[3] | KRENKEL WALTER. Ceramic Matrix Composites.Weinheim: WILEY-VCH Verlag GmbH & Co.KGaA, 2008. |
[4] | WANG YI, LIU HAI-TAO, CHENG HAI-FENG.Research progress on oxide/oxide ceramic matrix composites.Journal of Inorganic Materials, 2014, 29(7): 673-680. |
[5] | MA QING-SONG, LIU HAI-TAO, PAN YU,et al.Research progress on the application of C/SiC composites in scramjet.Journal of Inorganic Materials, 2013, 28(3): 247-255. |
[6] | MEYER P, WAAS A M.FEM predictions of damage in continuous fiber ceramic matrix composites under transverse tension using the crack band method.Acta Materialia, 2016, 102: 292-303. |
[7] | Li L B, SONG Y D, SUN Y C.Modeling the tensile behavior of unidirectional C/SiC ceramic-matrix composites.Mechanics of Composite Materials, 2014, 49(6): 659-672. |
[8] | WANG L, WANG Z, DONG S M,et al.Finite element simulation of stress distribution and development of Cf/SiC ceramice-matrix composite coated with single layer SiC coating during thermal shock.Composites: Part B, 2013, 51: 204-214. |
[9] | EVANS A G, ZOK F W.The physics and mechanics of fibre-reinforced brittle matrix composites.Journal of Materials Science, 1994, 29: 3857-3896. |
[10] | YANG L W, WANG J Y, LIU H T,et al.Sol-Gel temperature dependent ductile-to-brittle transition of aluminosilicate fiber reinforced silica matrix composite.Composites: Part B, 2017, 119: 79-89. |
[11] | FRAZER D, ABAD M D, KRUMWIEDE D,et al.Localized mechanical property assessment of SiC/SiC composite materials.Composites: Part A, 2015, 70: 93-101. |
[12] | BLAESE D, GARCIA D E, GUGLIELMI P,et al.ZrO2 fiber- matrix interfaces in alumina fiber-reinforced model composites.Journal of European Ceramic Society, 2015, 35: 1593-1598. |
[13] | UDAYAKUMAR A, SRI GANESH A, RAJA S,et al.Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI.Journal of the European Ceramic Society, 2011, 31: 1145-1153. |
[14] | YAN W, PUN C L, WU Z,et al.Some issues on nanoindentation method to measure the elastic modulus of particles in composites.Composites: Part B, 2011, 42: 2093-2097. |
[15] | ZHANG L, REN C, ZHOU C,et al.Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique.Applied Surface Science, 2015, 357: 1427-1433. |
[16] | HINOKI T, ZHANG W, KOHYAMA A, ,et al. . Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique. Journal of Nuclear Materials, 1998, 258-263: 1567-1571. |
[17] | SEBASTIANI M, JOHANNS K E, HERBERT E G,et al.A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings.Philosophical Magazine, 2015, 95: 1928-1944. |
[18] | SEBASTIANI M, JOHANNS K E, HERBERT E G,et al.Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges.Current Opinion in Solid State and Materials Science, 2015, 19: 324-333. |
[19] | LIU H T, YANG L W, SUN X,et al.Enhancing the fracture resistance of carbon fiber reinforced SiC matrix composites by interface modification through a simple fiber heat-treatment process.Carbon, 2016, 109: 435-443. |
[20] | LEATHERBARROW A, WU H Z.Mechanical behaviour of the constituents inside carbon-fibre/carbon-silicon carbide composites characterised by nano-indentation.Journal of the European Ceramic Society, 2012, 32: 579-588. |
[21] | MARX D T, RIESTER L.Mechanical properties of carbon-carbon composite components determined using nanoindentation.Carbon, 1999, 37: 1679-1684. |
[22] | DISS P, LAMON J, CARPENTIER L,et al.Sharp indentation behavior of carbon/carbon composites and varieties of carbon.Carbon, 2002, 40: 2567-2579. |
[23] | MULLER W M, MOOSBURGER-WILL J, SAUSE M G R,et al.Quantification of crack area in ceramic matrix composites at single- fiber push-out testing and influence of pyrocarbon fiber coating thickness on interfacial fracture toughness.Journal of the European Ceramic Society, 2015, 35: 2981-2989. |
[24] | OLIVER W C, PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.Journal of Materials Research, 1992, 7(6): 1564-1583. |
[25] | VANLANDINGHAM M R.Review of instrumented indentation.Journal of Research of the National Institute of Standards and Technology, 2003, 108(4): 249-265. |
[26] | OLIVER W C, PHARR G M.Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. Journal of Materials Research, 2004, 19(1): 3-20. |
[27] | FISCHER-CRIPPS A C. Critical review analysis and interpretation of nanoindentation test data.Surface& Coatings Technology, 2006, 200: 4153-4165. |
[28] | YANG L W, LIU H T, CHENG H F.Processing-temperature dependent micro- and macro-mechanical properties of SiC fiber reinforced SiC matrix composites.Composites: Part B, 2017, 129: 152-161. |
[29] | HONJO K.Fracture toughness of PAN-based carbon fibers estimated from strength-mirror size relation.Carbon, 2003, 41: 979-984. |
[30] | MORISHITA K, OCHIAI S, OKUDA H,et al.Fracture toughness of a crystalline silicon carbide fiber (tyranno-SA3®).Journal of the American Ceramic Society, 2006, 89(8): 2571-2576. |
[31] | OCHIAI S, KUBOSHIMA S, MORISHITA K,et al.Fracture toughness of Al2O3 fibers with an artificial notch introduced by a focused-ion-beam.Journal of the European Ceramic Society, 2010, 30: 1659-1667. |
[32] | CASELLAS D, CARO J, MOLAS S,et al.Fracture toughness of carbides in tool steels evaluated by nanoindentation.Acta Materialia, 2007, 55: 4277-4286. |
[33] | MUELLER M G, PEJCHAL V, ŽAGAR G,et al.Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams.Acta Materialia, 2015, 86: 385-395. |
[34] | LIU H T, YANG L W, HAN S,et al.Interface controlled micro- and macro-mechanical properties of aluminosilicate fiber reinforced SiC matrix composites.Journal of the European Ceramic Society, 2017, 37: 883-890. |
[35] | CAO S Y, WANG J, WANG H.High-temperature behavior and degradation mechanism of SiC fibers annealed in Ar and N2 atmospheres.Journal of Materials Science, 2016, 51: 4650-4659. |
[36] | DAVIES I J, ISHIKAWA T, SHIBUYA M,et al.Fibre and interfacial properties measured in situ for a 3D woven SiC/SiC-based composite with glass sealant.Composites: Part A, 1999, 30: 587-591. |
[37] | DAVIES I J, OGASAWARA T, ISHIKAWA T.Distribution of fibre pullout length and interface shear strength within a single fibre bundle for an orthogonal 3-D woven Si-Ti-C-O fibre/Si-Ti-C-O matrix composite tested at 1100℃ in air.Journal of the European Ceramic Society, 2005, 25: 599-604. |
[38] | BRANDSTETTER J, PETERLIK H, KROMP K,et al.A new fibre- bundle pull-out test to determine interface properties of a 2D- woven carbon/carbon composite.Composites Science Technology, 2003, 63: 653-660. |
[39] | BERTRAND S, FORIO P, PAILLER R,et al.Hi-Nicalon/SiC minicomposites with (pyrocarbon/SiC)n nanoscale multilayered interphases.Journal of the American Ceramic Society, 1999, 82(9): 2465-2473. |
[40] | SAUDER C, BRUSSON A, LAMON J.Influence of interface characteristics on the mechanical properties of Hi-Nicalon type-S or Tyranno-SA3 fiber-reinforced SiC/SiC minicomposites.International Journal of Applied Ceramic Technology, 2010, 7(3): 291-303. |
[41] | MORSCHER G N, MARTINEZ-FERNANDEZ J.Fiber effects on minicomposite mechanical properties for several silicon carbide fiber-chemically vapor-infiltrated silicon carbide matrix systems.Journal of the American Ceramic Society, 1999, 82(1): 145-155. |
[42] | REBILLAT F, LAMON J, GUETTE A.The concept of a strong interface applied to SiC/SiC composites with a BN interphase.Acta Materialia, 2000, 48: 4609-4618. |
[43] | BUET E, SAUDER C, SORNIN D,et al.Influence of surface fibre properties and textural organization of a pyrocarbon interphase on the interfacial shear stress of SiC/SiC minicomposites reinforced with Hi-Nicalon S and Tyranno SA3 fibres.Journal of the European Ceramic Society, 2014, 34: 179-188. |
[44] | MUELLER W M, MOOSBURGER-WILL J, SAUSE M G R,et al.Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness.Journal of the European Ceramic Society, 2013, 33: 441-451. |
[45] | RODRÍGUEZ M, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C,et al.A methodology to measure the interface shear strength by means of the fiber push-in test.Composites Science and Technology, 2012, 72: 1924-1932. |
[46] | HAN S, YANG L W, LIU H T,et al.Micro-mechanical properties and interfacial engineering of SiC fiber reinforced Sol-Gel fabricated mullite matrix composites.Materials and Design, 2017, 131: 265-272. |
[47] | HE M Y, HUTCHINSON J W.Crack deflection at the interface between dissimilar materials.International Journal of Solids and Structures, 1989, 25(9): 1053-1067. |
[48] | HE M Y, EVANS A G, HUTCHINSON J W.Crack deflection at an interface between dissimilar elastic materials: role of residual stresses.International Journal of Solids and Structures, 1994, 31(24): 3443-3455. |
[49] | FUJITA H, JEFFERSON G, MCMEEKING R M,et al.Mullite/alumina mixtures for use as porous matrices in oxide fiber composites.Journal of the American Ceramic Society, 2004, 87(2): 261-267. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||