Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (2): 153-161.DOI: 10.15541/jim20170414
• Orginal Article • Previous Articles Next Articles
NIE Heng-Chang1, WANG Yong-Ling1, HE Hong-Liang2, WANG Gen-Shui1, DONG Xian-Lin1
Received:
2017-08-25
Revised:
2017-11-13
Published:
2018-02-26
Online:
2018-01-26
CLC Number:
NIE Heng-Chang, WANG Yong-Ling, HE Hong-Liang, WANG Gen-Shui, DONG Xian-Lin. Recent Progress of Porous PZT95/5 Ferroelectric Ceramics[J]. Journal of Inorganic Materials, 2018, 33(2): 153-161.
Fig. 3 SEM images of (a) Dextrin, (b) PMMA, (c) PZT 95/5 ceramics with Dextrin as pore formers and (d) PZT 95/5 ceramics with PMMA as pore formers[28-29]
Fig. 4 SEM images of the porous PZT95/5 ceramics with different pore sizes[37] (a) 1.8 mm PMMA spheres; (b) 5 μm PMMA spheres; (c) 15 μm PMMA spheres; (d) 60 μm PMMA spheres
Property | Dense PZT95/5 ferroelectric ceramics | Porous PZT95/5 ferroelectric ceramics |
---|---|---|
Bulk density/(g•cm-3) | ~7.6 | ~7.3 |
Effective permittivity | 280-300 | 250-260 |
Piezoelectric constant/(pC•N-1) | 66-70 | 66-70 |
Bulk resistivity/(Ω•cm) | 1011-12 | 1011-12 |
Tangent loss/% | 1.7-2.0 | 1.5-1.8 |
Remnant polarization/(μC•cm-2) | ~35 | ~30 |
Table 1 Physical property comparison between dense and porous PZT95/5 ferroelectric ceramics with disperse distribution[39-40]
Property | Dense PZT95/5 ferroelectric ceramics | Porous PZT95/5 ferroelectric ceramics |
---|---|---|
Bulk density/(g•cm-3) | ~7.6 | ~7.3 |
Effective permittivity | 280-300 | 250-260 |
Piezoelectric constant/(pC•N-1) | 66-70 | 66-70 |
Bulk resistivity/(Ω•cm) | 1011-12 | 1011-12 |
Tangent loss/% | 1.7-2.0 | 1.5-1.8 |
Remnant polarization/(μC•cm-2) | ~35 | ~30 |
Fig. 7 Schematic diagram (a) and SEM images of polished fracture cross section of sandwich structure PZT95/5 ferroelectric ceramic: (b) full cross section; (c) dense layer; (d) porous layer[42]
Catalogue | Property |
---|---|
Type I (not dependent on porosity) | Curie temperature, Spontaneous polarization |
Type II (depend only on the amount of porosity) | Remnant polarization, bulk density, effective permittivity, piezoelectric constant, tangent loss, Young’s modulus, Dynamic yielding threshold |
Type III (depend on both the amount and one or more characteristics of porosity) | Shock plasticity, Dielectric strength |
Table 2 Relationship catalogue between physical property and pore of PZT95/5 ferroelectric ceramics
Catalogue | Property |
---|---|
Type I (not dependent on porosity) | Curie temperature, Spontaneous polarization |
Type II (depend only on the amount of porosity) | Remnant polarization, bulk density, effective permittivity, piezoelectric constant, tangent loss, Young’s modulus, Dynamic yielding threshold |
Type III (depend on both the amount and one or more characteristics of porosity) | Shock plasticity, Dielectric strength |
[1] | 钟维烈. 铁电体物理学. 北京: 科学出版社, 1998. |
[2] | 王永龄. 功能陶瓷性能与应用. 北京: 科学出版社, 2003. |
[3] | 贺元吉, 张亚洲, 李传胪. 爆电换能的理论分析. 国防科技大学学报, 2000, 22(z1): 43-48. |
[4] | 刘高旻, 刘雨生, 张毅, 等. PZT铁电陶瓷及其在脉冲能源中的应用. 材料导报, 2006, 20(6): 74-77. |
[5] | NEILSON F W.Effects of strong shocks in ferroelectric materials.Bull. Am. Phys. Soc., 1957, 2(2): 302. |
[6] | BERLINCOURT D, JAFFE H, KRUEGER H H A, et al. Release of electric energy in PbNb(Zr,Ti,Sn)O3 by temperature-and by pressure-enforced phase transitions.Applied Physics Letters, 1963, 3(5): 90-92. |
[7] | LYSNE P C, PERCIVAL C M.Electric energy generation by shock compression of ferroelectric ceramics: normal-mode response of PZT 95/5.Journal of Applied Physics, 1975, 46(4): 1519-1525. |
[8] | STORZ L J, DUNGAN R H.A Study of the Electrical, Mechanical and Microstructural Properties of 95/5 PZT as Function of Pore Former Type and Concentration, Sandia Report, SAND85-1612[R]. Sandia National Laboratories, Albuquerque, NM, USA, 1985. |
[9] | YONGLING W, WAN-ZONG Y, GUO-RONG H, et al.Study on shock wave-explosive energy converter of PZT 95/5 ferroelectric ceramics.Ferroelectrics, 1983, 49(1): 169-176. |
[10] | FRITZ I J, KECK J D.Pressure-temperature phase diagrams for several modified lead zirconate ceramics.Journal of Physics and Chemistry of Solids, 1978, 39(11): 1163-1167. |
[11] | ALTGILBERS L L, BAIRD J, FREEMAN B, et al.Explosive Pulsed Power. London: Imperial College Press, 2010. |
[12] | SHKURATOV S I, BAIRD J, ANTIPOV V G, et al.Depolarization mechanisms of PbZr0.52Ti0.48O3 and PbZr0.95Ti0.05O3 poled ferroelectrics under high strain rate loading.Applied Physics Letters, 2014, 104(21): 212901. |
[13] | SHKURATOV S I, BAIRD J, TALANTSEV E F.Note: utilizing Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics to scale down autonomous explosive-driven shock-wave ferroelectric generators.Review of Scientific Instruments, 2012, 83(7): 076104. |
[14] | ALTGILBERS L L, STULTS A H, KRISTIANSEN M, et al.Recent advances in explosive pulsed power.Journal of Directed Energy, 2009, 3(2): 149-191. |
[15] | VALADEZ J C, SAHUL R, ALBERTA E, et al.The effect of a hydrostatic pressure induced phase transformation on the unipolar electrical response of Nb modified 95/5 lead zirconate titanate.Journal of applied physics, 2012, 111(2): 024109. |
[16] | JAFFE B, COOK W K, JAFFE H, et al.Piezoelectric ceramics. Academic Press, 1971. |
[17] | LOCKWOOD STEVE, VOIGHT JIM, PIKE RICK, et al.PZT Supply Team Goes from Basic Research to WR Production. MFG S&T Quarterly, 2003, 11: 2. |
[18] | DUNGAN R H, STORZ L J.Relation between chemical, mechanical, and electrical properties of Nb2O5-modified 95mol% PbZrO3-5mol% PbTiO3.Journal of the American Ceramic Society, 1985, 68(10): 530-533. |
[19] | TUTTLE B, VOIGT J, MOORE R.Structure-property Relationships of Antiferroelectric Pb(Zr,Ti)O3 Based Materials: Hydrostatic Depoling Characteristics. Sandia National Labs., Albuquerque, NM(United States), 1997. |
[20] | TUTTLE B A, YANG P, GIESKE J H, et al.Pressure-induced phase transformation of controlled-porosity Pb(Zr0.95Ti0.05)O3 ceramics.Journal of the American Ceramic Society, 2001, 84(6): 1260-1264. |
[21] | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984).Pure and Applied Chemistry, 1985, 57(4): 603-619. |
[22] | STUDART A R, GONZENBACH U T, TERVOORT E, et al.Processing routes to macroporous ceramics: a review.Journal of the American Ceramic Society, 2006, 89(6): 1771-1789. |
[23] | OHJI T, FUKUSHIMA M.Macro-porous ceramics: processing and properties.International Materials Reviews, 2012, 57(2): 115-131. |
[24] | HAMMEL E C, IGHODARO O L R, OKOLI O I. Processing and properties of advanced porous ceramics: an application based review.Ceramics International, 2014, 40(10): 15351-15370. |
[25] | 陈永. 多孔材料制备与表征. 合肥: 中国科学技术大学出版社, 2010. |
[26] | YANG P, MOORE R H, LOCKWOOD S J BRUCE A, et al. Chem-prep PZT95/5 for Neutron Generator Applications: ehe Effect of Pore Former Type and Density on the Depoling Behavior of Chemically Prepared PZT 95/5 ceramics, Sandia Report SAND2003- 0537[R]. Sandia National Laboratories, Albuquerque, NM, USA, 2003. |
[27] | SETCHELL R E, TUTTLE B A, VOIGT J A.Effects of Microstructural Variables on the Shock Wave Response of PZT 95/5. Sandia Report SAND2003-0537. Sandia National Laboratories, Albuquerque, NM, USA, 2003. |
[28] | ZENG T, DONG X L, MAO C L, et al.Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics.Journal of the European Ceramic Society, 2007, 27(4): 2025-2029. |
[29] | ZENG T, WANG G, DONG X, et al.Investigation on FR(LT)-FR(HT) phase transition and pyroelectric properties of porous Zr-rich lead zirconate titante ceramics.Materials Science and Engineering: B, 2007, 140(1): 5-9. |
[30] | NIE H C, DONG X L, FENG N B, et al.Quantitative dependence of the properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics on porosity.Materials Research Bulletin, 2010, 45(5): 564-567. |
[31] | 王永刚. 多孔未极化 Pb(Zr0.95Ti0.05)O3 铁电陶瓷单轴压缩力学响应与相变. 物理学报, 2015, 64: 134601. |
[32] | 蒋招绣, 申海艇, 辛铭之, 等. 多孔极化PZT95/5 铁电陶瓷单轴压缩力学响应与放电特性. 固体力学学报, 2016, 37(1): 50-58. |
[33] | SETCHELL R E.Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Hugoniot states and constitutive mechanical properties.Journal of Applied Physics, 2003, 94(1): 573-588. |
[34] | SETCHELL R E.Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: depoling currents.Journal of Applied Physics, 2005, 97(1): 013507. |
[35] | SETCHELL R E.Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: microstructural effects. Journal of Applied Physics, 2007, 101(5): 053525. |
[36] | FENG N, NIE H, CHEN X, et al.Depoling of porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load.Current Applied Physics, 2010, 10(6): 1387-1390. |
[37] | NIE H C, DONG X, FENG N, et al.Microgeometry effect on the properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics.Materials Research Bulletin, 2011, 46(8): 1243-1246. |
[38] | NIE H C, FENG N B, CHEN X F, et al.Enhanced ferroelectric properties of intragranular-porous Pb (Zr0.95Ti0.05)O3 ceramic fabricated with carbon nanotubes.Journal of the American Ceramic Society, 2010, 93(3): 642-645. |
[39] | NIE H C, DONG X, CHEN X, et al.Formation mechanism of intragranular pores in Pb(Zr0.95Ti0.05)O3 ferroelectric ceramic.Journal of the American Ceramic Society, 2012, 95(1): 223-226. |
[40] | NIE H C, YU Y, LIU Y, et al. Enhanced shock performance by disperse porous structure: a case study in PZT95/5 ferroelectric ceramics. Journal of the American Ceramic Society, DOI:10.1111/ jace.15097, 2017, 1-7. |
[41] | MOORE R H, HUTCHINSON M A, MONTOYA T V, et al. Method of Making and Ceramic Articles with Multiple Regions of Distinct Density: U.S. Patent 8,212,456.2012-7-3. |
[42] | NIE H C, DONG X, CHEN X, et al.Enhanced performances of sandwich structure Pb0.99 (Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics for pulsed power application. Materials Research Bulletin, 2014, 51(9): 167-170. |
[43] | LYSNE P C.Dielectric breakdown of shock-loaded PZT 65/35.Journal of Applied Physics, 1973, 44(2): 577-582. |
[44] | LYSNE P C.Dielectric properties of shock-wave-compressed PZT 95/5.Journal of Applied Physics, 1977, 48(3): 1020-1023. |
[45] | LYSNE P C.Resistivity of shock-wave-compressed PZT 95/5.Journal of Applied Physics, 1977, 48(11): 4565-4568. |
[46] | CHHABILDAS L C.Dynamic Shock Studies of PZT 95/5 Ferroelectric Ceramic. Sandia Report, SAND84-1729. Sandia National Laboratories, Albuquerque, NM, USA, 1984. |
[47] | CHHABILDAS L C, CARR M J, KUNZ S C, et al.Shock Recovery Experiments on PZT 95/5. Sandia Report, SAND85-0406C. Sandia National Laboratories, Albuquerque, NM, USA, 1985. |
[48] | HALPIN W J.Resistivity estimates for some shocked ferroelectrics.Journal of Applied Physics, 1968, 39(8): 3821-3826. |
[49] | TKACH Y, SHKURATOV S I, TALANTSEV E F, et al.Theoretical treatment of explosive-driven ferroelectric generators.IEEE Transactions On Plasma Science, 2002, 30(5): 1665-1673. |
[50] | ZHANG F, HE H, LIU G, et al.Failure behavior of Pb (Zr0.95Ti0.05) O3 ferroelectric ceramics under shock compression.Journal of Applied Physics, 2013, 113(18): 183501. |
[51] | ZHANG F, LIU Y, XIE Q, et al.Electrical response of Pb (Zr0.95Ti0.05)O3 under shock compressions.Journal of Applied Physics, 2015, 117(13): 134104. |
[52] | NIE H C, YANG J, CHEN X, et al.Mechanical induced electrical failure of shock compressed PZT95/5 ferroelectric ceramics.Current Applied Physics, 2017, 17(4): 448-453. |
[53] | 喻寅, 王文强, 杨佳, 等. 多孔脆性介质冲击波压缩破坏的细观机理和图像. 物理学报, 2012, 61(4): 48103. |
[54] | YU Y, WANG W, HE H, et al.Mesoscopic deformation features of shocked porous ceramic: polycrystalline modeling and experimental observations.Journal of Applied Physics, 2015, 117(12): 125901. |
[55] | YU Y, WANG W, HE H, et al.Modeling multiscale evolution of numerous voids in shocked brittle material.Physical Review E, 2014, 89(4): 043309. |
[56] | 喻寅, 贺红亮, 王文强, 等. 含微孔洞脆性材料的冲击响应特性与介观演化机制. 物理学报, 2014, 63(24): 246102. |
[57] | 喻寅, 贺红亮, 王文强, 等. 多孔脆性材料对高能量密度脉冲的吸收和抵抗能力. 物理学报, 2015, 64(12): 124302. |
[58] | JIANG T, YU Y, HE H, et al.Macroscopic shock plasticity of brittle material through designed void patterns.Journal of Applied Physics, 2016, 119(9): 095905. |
[59] | RICE R W.The Porosity Dependence of Physical Properties of Materials: a Summary Review, Key Engineering Materials. Zürich Trans Tech Publications, 1996, 115: 1-20. |
[60] | LIU Z, REN W, NIE H, et al.Pressure driven depolarization behavior of Bi0.5Na0.5TiO3 based lead-free ceramics.Applied Physics Letters, 2017, 110(21): 212901. |
[61] | SHKURATOV S I, BAIRD J, ANTIPOV V G, et al.Ultrahigh energy density harvested from domain-engineered relaxor ferroelectric single crystals under high strain rate loading. Scientific Reports, 2017, 7: 46758. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||