Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (1): 19-26.DOI: 10.15541/jim20170146
• Orginal Article • Previous Articles Next Articles
YIN Yue-Yue1, YANG Yong2, ZHANG Liang-Zhu2, LI Yong-Sheng1, MA Yun-Feng2, YANG Li-Li2, HUANG Zheng-Ren2
Received:
2017-03-30
Revised:
2017-06-08
Published:
2018-01-23
Online:
2017-12-15
Supported by:
CLC Number:
YIN Yue-Yue, YANG Yong, ZHANG Liang-Zhu, LI Yong-Sheng, MA Yun-Feng, YANG Li-Li, HUANG Zheng-Ren. Facile Synthesis of Au/Pd Nano-dumbells for Catalytic Reduction of p-Nitrophenol[J]. Journal of Inorganic Materials, 2018, 33(1): 19-26.
Fig. 8 UV-Vis absorption spectra of AuNRs (a), different Au/Pd NDs (b-e) for effective catalytic reduction of p-nitrophenol, ln(C/C0) against time for the determination of rate constant in presence of AuNRs and Au/Pd NDs for effective catalytic reduction of p-nitrophenol (f)
Nature of the catalyts | Size of palladium nanoparticles/nm | Rate constant/min-1 |
---|---|---|
AuNRs | 0 | 0.02 |
AA : Pd=0.10 | 11.4 | 0.16 |
AA : Pd=0.25 | 15.6 | 0.22 |
AA : Pd=0.50 | 20.7 | 0.38 |
AA : Pd=1.00 | 33.6 | 0.18 |
Table 1 Catalytic activity comaprison of AuNRs and Au/Pd NDs for the reduction of 4-nitrophenol
Nature of the catalyts | Size of palladium nanoparticles/nm | Rate constant/min-1 |
---|---|---|
AuNRs | 0 | 0.02 |
AA : Pd=0.10 | 11.4 | 0.16 |
AA : Pd=0.25 | 15.6 | 0.22 |
AA : Pd=0.50 | 20.7 | 0.38 |
AA : Pd=1.00 | 33.6 | 0.18 |
Fig. 9 UV-Vis absorption spectra of Au/Pd NDs for effective catalytic reduction of p-nitrophenol (a-c) and ln (Ct/C0) against time for the determination of rate constant (d)
Nature of the catalyst | Rate constant/min-1 | Concentration of catalyst/(mg·mL-1) | Concentration of 4-NP/(mmol·L-1) | References |
---|---|---|---|---|
Pd supported on TiO2 microspheres | 0.190 | 0.070 | 10.00 | [30] |
Pd on partially reduced graphene oxide | 14.400 | 0.100 | 10.00 | [31] |
Pd immobilized on multiwalled carbon nanotube | 0.014 | 0.250 | 0.06 | [32] |
Pd stabilized by glycodendrimers in water | 0.240 | 0.240 | 0.25 | [33] |
Pd-tipped AuNRs | 0.130 | 0.002 | 0.40 | [17] |
Au/Pd NDs | 0.440 | 0.004 | 10.00 | Current study |
Table 2 Catalytic activity comaprison of Pd based nanoparticle for the reduction of 4-nitrophenol
Nature of the catalyst | Rate constant/min-1 | Concentration of catalyst/(mg·mL-1) | Concentration of 4-NP/(mmol·L-1) | References |
---|---|---|---|---|
Pd supported on TiO2 microspheres | 0.190 | 0.070 | 10.00 | [30] |
Pd on partially reduced graphene oxide | 14.400 | 0.100 | 10.00 | [31] |
Pd immobilized on multiwalled carbon nanotube | 0.014 | 0.250 | 0.06 | [32] |
Pd stabilized by glycodendrimers in water | 0.240 | 0.240 | 0.25 | [33] |
Pd-tipped AuNRs | 0.130 | 0.002 | 0.40 | [17] |
Au/Pd NDs | 0.440 | 0.004 | 10.00 | Current study |
[1] | LIU P, ZHAO M.Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP).Applied Surface Science, 2009, 255(7): 3989-3993. |
[2] | EICHENBAUM G, JOHNSON M, KIRKLAND D, et al.Assessment of the genotoxic and carcinogenic risks of p-nitrophenol when it is present as an impurity in a drug product.Regulatory Toxicology and Pharmacology, 2009, 55(1): 33-42. |
[3] | HERVÉS P, PÉREZ-LORENZO M, LIZ-MARZÁN L M, et al. Catalysis by metallic nanoparticles in aqueous solution: model reactions.Chemical Society Reviews, 2012, 41(17): 5577-5587. |
[4] | ZHAO P, FENG X, HUANG D, et al.Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles.Coordination Chemistry Reviews, 2015, 287: 114-136. |
[5] | ZHAO R, GONG M, ZHU H, et al.Seed-assisted synthesis of Pd@Au core-shell nanotetrapods and their optical and catalytic properties.Nanoscale, 2014, 6(15): 9273-9278. |
[6] | WANG L, YAMAUCHI Y.Strategic synthesis of trimetallic Au@Pd@Pt core-shell nanoparticles from polyvinylpyrrolidone - based aqueous solution toward highly active electrocatalysts.Chemistry of Materials, 2011, 23(9): 2457-2465. |
[7] | HUANG X, WU H, PU S, et al.One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer.Green Chemistry, 2011, 13(4): 950-957. |
[8] | KHANAL B P, ZUBAREV E R.Polymer-functionalized platinum- on-gold bimetallic nanorods.Angewandte Chemie International Edition, 2009, 48(37): 6888-6891. |
[9] | CHANTRY R L, ATANASOV I, SIRIWATCHARAPIBOON W, et al.An atomistic view of the interfacial structures of AuRh and AuPd nanorods.Nanoscale, 2013, 5(16): 7452-7457. |
[10] | CAO Y, YANG Y, SHAN Y, et al.One-pot and facile fabrication of hierarchical branched Pt-Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cell. ACSApplied Materials & Interfaces, 2016, 8(9): 5998-6003. |
[11] | LONG N V, YANG Y, THI C M, et al.The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells.Nano Energy, 2013, 2(5): 636-676. |
[12] | AN J G, GAO X, JIN J J, et al.Mesoporous zeolite ZSM-5 synthesized via gel conversion with polyethyleneglycol as template and its catalytic performance.Journal of Inorganic Materials, 2015, 30(11): 1148-1154. |
[13] | LV Z Y, FEI Y, CHEN W Y, et al.Hierarchical wheat-like Au-Pd heterostructures with enhanced catalytic activity toward methanol electrooxidation.Journal of Alloys and Compounds, 2013, 581: 717-723. |
[14] | PAUNOVIC V, ORDOMSKY V,D’ANGELO M F N, et al.. Direct synthesis of hydrogen peroxide over Au-Pd catalyst in a wall- coated microchannel.Journal of Catalysis, 2014, 309: 325-332. |
[15] | WU B, LIU D, MUBEEN S, et al.Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction.Journal of the American Chemical Society, 2016, 138(4): 1114-1117. |
[16] | COSTI R, SAUNDERS A E, ELMALEM E, et al.Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells.Nano Letters, 2008, 8(2): 637-641. |
[17] | ZHENG Z, TACHIKAWA T, MAJIMA T.Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level.Journal of the American Chemical Society, 2015, 137(2): 948-957. |
[18] | GARG N, SCHOLL C, MOHANTY A, et al.The role of bromide ions in seeding growth of Au nanorods.Langmuir, 2010, 26(12): 10271-10276. |
[19] | WEITZNER S E, DABO I.Quantum-continuum simulation of underpotential deposition at electrified metal-solution interfaces.npj Computational Materials, 2017, 3: 1, doi: 10.1038/S41524- 016-004-9. |
[20] | YE X, ZHENG C, CHEN J, et al.Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods.Nano Letter, 2013, 13(2): 765-771. |
[21] | JING H, WANG H.Controlled overgrowth of Pd on Au nanorods.CrystEngComm, 2014, 16(40): 9469-9477. |
[22] | PRETZER L A, HECK K N, KIM S S, et al.Improving gold catalysis of nitroarene reduction with surface Pd.Catalysis Today, 2016, 264: 31-36. |
[23] | LINK S, MOHAMED M B, EL-SAYED M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant.Journal of Physical Chemistry B, 1999, 103(16): 3073-3077. |
[24] | ZHANG L, ZHANG J, JIANG Z, et al.Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres.Journal of Materials Chemistry, 2011, 21(26): 9620-9625. |
[25] | SHIN K S, CHOI J Y, PARK C S, et al.Facile synthesis and catalytic application of silver-deposited magnetic nanoparticles.Catalysis Letters, 2009, 133(12): 1-7. |
[26] | PANIGRAHI S, BASU S, PRAHARAJ S,et al.. Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. Journal of Physical Chemistry C, 2007, 111(12): 4596-4605. |
[27] | OH S D, KIM M R, CHOI S H, et al.Radiolytic synthesis of Pd-M (M= Ag, Au, Cu, Ni and Pt) alloy nanoparticles and their use in reduction of 4-nitrophenol.Journal of Industrial and Engineering Chemistry, 2008, 14(5): 687-692. |
[28] | FENGER R, FERTITTA E, KIRMSE H, et al.Size dependent catalysis with CTAB-stabilized gold nanoparticles.Physical Chemistry Chemical Physics, 2012, 14(26): 9343-9349. |
[29] | CHEN M, KUMAR D, YI C, et al.The promotional effect of gold in catalysis by palladium-gold.Science, 2005, 310(5746): 291-293. |
[30] | JIN Z, XIAO M, BAO Z, et al.A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles.Angewandte Chemie International Edition, 2012, 51(26): 6406-6410. |
[31] | YANG M Q, PAN X, ZHANG N, et al.A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds.CrystEngComm, 2013, 15(34): 6819-6828. |
[32] | MURUGAN E, VIMALA G.Synthesis, characterization, and catalytic activity for hybrids of multi-walled carbon nanotube and amphiphilic poly (propyleneimine) dendrimer immobilized with silver and palladium nanoparticle.Journal of Colloid and Interface Science, 2013, 396: 101-111. |
[33] | GATARD S, SALMON L, DERAEDT C, et al.Palladium nanoparticles stabilized by glycodendrimers and their application in catalysis.European Journal of Inorganic Chemistry, 2014, 2014(26): 4369-4375. |
[34] | SHAN Y, ZHENG Z, LIU J, et al.Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate.npj Computational Materials, 2017, 3: 11, doi: 10.1038/S41524- 017-0008-0. |
[1] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[4] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[5] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[6] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[7] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[11] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[12] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[13] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[14] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[15] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||