Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (1): 19-26.DOI: 10.15541/jim20170146
• Orginal Article • Previous Articles Next Articles
YIN Yue-Yue1, YANG Yong2, ZHANG Liang-Zhu2, LI Yong-Sheng1, MA Yun-Feng2, YANG Li-Li2, HUANG Zheng-Ren2
Received:
2017-03-30
Revised:
2017-06-08
Published:
2018-01-23
Online:
2017-12-15
Supported by:
CLC Number:
YIN Yue-Yue, YANG Yong, ZHANG Liang-Zhu, LI Yong-Sheng, MA Yun-Feng, YANG Li-Li, HUANG Zheng-Ren. Facile Synthesis of Au/Pd Nano-dumbells for Catalytic Reduction of p-Nitrophenol[J]. Journal of Inorganic Materials, 2018, 33(1): 19-26.
Fig. 8 UV-Vis absorption spectra of AuNRs (a), different Au/Pd NDs (b-e) for effective catalytic reduction of p-nitrophenol, ln(C/C0) against time for the determination of rate constant in presence of AuNRs and Au/Pd NDs for effective catalytic reduction of p-nitrophenol (f)
Nature of the catalyts | Size of palladium nanoparticles/nm | Rate constant/min-1 |
---|---|---|
AuNRs | 0 | 0.02 |
AA : Pd=0.10 | 11.4 | 0.16 |
AA : Pd=0.25 | 15.6 | 0.22 |
AA : Pd=0.50 | 20.7 | 0.38 |
AA : Pd=1.00 | 33.6 | 0.18 |
Table 1 Catalytic activity comaprison of AuNRs and Au/Pd NDs for the reduction of 4-nitrophenol
Nature of the catalyts | Size of palladium nanoparticles/nm | Rate constant/min-1 |
---|---|---|
AuNRs | 0 | 0.02 |
AA : Pd=0.10 | 11.4 | 0.16 |
AA : Pd=0.25 | 15.6 | 0.22 |
AA : Pd=0.50 | 20.7 | 0.38 |
AA : Pd=1.00 | 33.6 | 0.18 |
Fig. 9 UV-Vis absorption spectra of Au/Pd NDs for effective catalytic reduction of p-nitrophenol (a-c) and ln (Ct/C0) against time for the determination of rate constant (d)
Nature of the catalyst | Rate constant/min-1 | Concentration of catalyst/(mg·mL-1) | Concentration of 4-NP/(mmol·L-1) | References |
---|---|---|---|---|
Pd supported on TiO2 microspheres | 0.190 | 0.070 | 10.00 | [30] |
Pd on partially reduced graphene oxide | 14.400 | 0.100 | 10.00 | [31] |
Pd immobilized on multiwalled carbon nanotube | 0.014 | 0.250 | 0.06 | [32] |
Pd stabilized by glycodendrimers in water | 0.240 | 0.240 | 0.25 | [33] |
Pd-tipped AuNRs | 0.130 | 0.002 | 0.40 | [17] |
Au/Pd NDs | 0.440 | 0.004 | 10.00 | Current study |
Table 2 Catalytic activity comaprison of Pd based nanoparticle for the reduction of 4-nitrophenol
Nature of the catalyst | Rate constant/min-1 | Concentration of catalyst/(mg·mL-1) | Concentration of 4-NP/(mmol·L-1) | References |
---|---|---|---|---|
Pd supported on TiO2 microspheres | 0.190 | 0.070 | 10.00 | [30] |
Pd on partially reduced graphene oxide | 14.400 | 0.100 | 10.00 | [31] |
Pd immobilized on multiwalled carbon nanotube | 0.014 | 0.250 | 0.06 | [32] |
Pd stabilized by glycodendrimers in water | 0.240 | 0.240 | 0.25 | [33] |
Pd-tipped AuNRs | 0.130 | 0.002 | 0.40 | [17] |
Au/Pd NDs | 0.440 | 0.004 | 10.00 | Current study |
[1] | LIU P, ZHAO M.Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP).Applied Surface Science, 2009, 255(7): 3989-3993. |
[2] | EICHENBAUM G, JOHNSON M, KIRKLAND D, et al.Assessment of the genotoxic and carcinogenic risks of p-nitrophenol when it is present as an impurity in a drug product.Regulatory Toxicology and Pharmacology, 2009, 55(1): 33-42. |
[3] | HERVÉS P, PÉREZ-LORENZO M, LIZ-MARZÁN L M, et al. Catalysis by metallic nanoparticles in aqueous solution: model reactions.Chemical Society Reviews, 2012, 41(17): 5577-5587. |
[4] | ZHAO P, FENG X, HUANG D, et al.Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles.Coordination Chemistry Reviews, 2015, 287: 114-136. |
[5] | ZHAO R, GONG M, ZHU H, et al.Seed-assisted synthesis of Pd@Au core-shell nanotetrapods and their optical and catalytic properties.Nanoscale, 2014, 6(15): 9273-9278. |
[6] | WANG L, YAMAUCHI Y.Strategic synthesis of trimetallic Au@Pd@Pt core-shell nanoparticles from polyvinylpyrrolidone - based aqueous solution toward highly active electrocatalysts.Chemistry of Materials, 2011, 23(9): 2457-2465. |
[7] | HUANG X, WU H, PU S, et al.One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer.Green Chemistry, 2011, 13(4): 950-957. |
[8] | KHANAL B P, ZUBAREV E R.Polymer-functionalized platinum- on-gold bimetallic nanorods.Angewandte Chemie International Edition, 2009, 48(37): 6888-6891. |
[9] | CHANTRY R L, ATANASOV I, SIRIWATCHARAPIBOON W, et al.An atomistic view of the interfacial structures of AuRh and AuPd nanorods.Nanoscale, 2013, 5(16): 7452-7457. |
[10] | CAO Y, YANG Y, SHAN Y, et al.One-pot and facile fabrication of hierarchical branched Pt-Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cell. ACSApplied Materials & Interfaces, 2016, 8(9): 5998-6003. |
[11] | LONG N V, YANG Y, THI C M, et al.The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells.Nano Energy, 2013, 2(5): 636-676. |
[12] | AN J G, GAO X, JIN J J, et al.Mesoporous zeolite ZSM-5 synthesized via gel conversion with polyethyleneglycol as template and its catalytic performance.Journal of Inorganic Materials, 2015, 30(11): 1148-1154. |
[13] | LV Z Y, FEI Y, CHEN W Y, et al.Hierarchical wheat-like Au-Pd heterostructures with enhanced catalytic activity toward methanol electrooxidation.Journal of Alloys and Compounds, 2013, 581: 717-723. |
[14] | PAUNOVIC V, ORDOMSKY V,D’ANGELO M F N, et al.. Direct synthesis of hydrogen peroxide over Au-Pd catalyst in a wall- coated microchannel.Journal of Catalysis, 2014, 309: 325-332. |
[15] | WU B, LIU D, MUBEEN S, et al.Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction.Journal of the American Chemical Society, 2016, 138(4): 1114-1117. |
[16] | COSTI R, SAUNDERS A E, ELMALEM E, et al.Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells.Nano Letters, 2008, 8(2): 637-641. |
[17] | ZHENG Z, TACHIKAWA T, MAJIMA T.Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level.Journal of the American Chemical Society, 2015, 137(2): 948-957. |
[18] | GARG N, SCHOLL C, MOHANTY A, et al.The role of bromide ions in seeding growth of Au nanorods.Langmuir, 2010, 26(12): 10271-10276. |
[19] | WEITZNER S E, DABO I.Quantum-continuum simulation of underpotential deposition at electrified metal-solution interfaces.npj Computational Materials, 2017, 3: 1, doi: 10.1038/S41524- 016-004-9. |
[20] | YE X, ZHENG C, CHEN J, et al.Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods.Nano Letter, 2013, 13(2): 765-771. |
[21] | JING H, WANG H.Controlled overgrowth of Pd on Au nanorods.CrystEngComm, 2014, 16(40): 9469-9477. |
[22] | PRETZER L A, HECK K N, KIM S S, et al.Improving gold catalysis of nitroarene reduction with surface Pd.Catalysis Today, 2016, 264: 31-36. |
[23] | LINK S, MOHAMED M B, EL-SAYED M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant.Journal of Physical Chemistry B, 1999, 103(16): 3073-3077. |
[24] | ZHANG L, ZHANG J, JIANG Z, et al.Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres.Journal of Materials Chemistry, 2011, 21(26): 9620-9625. |
[25] | SHIN K S, CHOI J Y, PARK C S, et al.Facile synthesis and catalytic application of silver-deposited magnetic nanoparticles.Catalysis Letters, 2009, 133(12): 1-7. |
[26] | PANIGRAHI S, BASU S, PRAHARAJ S,et al.. Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. Journal of Physical Chemistry C, 2007, 111(12): 4596-4605. |
[27] | OH S D, KIM M R, CHOI S H, et al.Radiolytic synthesis of Pd-M (M= Ag, Au, Cu, Ni and Pt) alloy nanoparticles and their use in reduction of 4-nitrophenol.Journal of Industrial and Engineering Chemistry, 2008, 14(5): 687-692. |
[28] | FENGER R, FERTITTA E, KIRMSE H, et al.Size dependent catalysis with CTAB-stabilized gold nanoparticles.Physical Chemistry Chemical Physics, 2012, 14(26): 9343-9349. |
[29] | CHEN M, KUMAR D, YI C, et al.The promotional effect of gold in catalysis by palladium-gold.Science, 2005, 310(5746): 291-293. |
[30] | JIN Z, XIAO M, BAO Z, et al.A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles.Angewandte Chemie International Edition, 2012, 51(26): 6406-6410. |
[31] | YANG M Q, PAN X, ZHANG N, et al.A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds.CrystEngComm, 2013, 15(34): 6819-6828. |
[32] | MURUGAN E, VIMALA G.Synthesis, characterization, and catalytic activity for hybrids of multi-walled carbon nanotube and amphiphilic poly (propyleneimine) dendrimer immobilized with silver and palladium nanoparticle.Journal of Colloid and Interface Science, 2013, 396: 101-111. |
[33] | GATARD S, SALMON L, DERAEDT C, et al.Palladium nanoparticles stabilized by glycodendrimers and their application in catalysis.European Journal of Inorganic Chemistry, 2014, 2014(26): 4369-4375. |
[34] | SHAN Y, ZHENG Z, LIU J, et al.Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate.npj Computational Materials, 2017, 3: 11, doi: 10.1038/S41524- 017-0008-0. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||