Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (8): 785-791.DOI: 10.15541/jim20160524
• Orginal Article • Next Articles
WANG Hao1, WANG Jin-Long2, GOU Yan-Zi1
Received:
2016-09-18
Revised:
2016-12-05
Published:
2017-08-10
Online:
2017-07-19
CLC Number:
WANG Hao, WANG Jin-Long, GOU Yan-Zi. Progress of Advanced Boron Carbide Ceramic Materials Prepared by Precursor Derived Method[J]. Journal of Inorganic Materials, 2017, 32(8): 785-791.
Serial no. | Polymeric precursors | Temperature/℃ | Time/h | Ref. |
---|---|---|---|---|
1 | Mixed solution of PVA, H3BO3 and glycerine | 1200-1500 | 3 | [15] |
2 | Reaction product of glycerin, tartaric acid and H3BO3 | 1250 | 0-5 | [16] |
3 | Reaction product of d-mannitol, H3BO3 | 1500 | 3 | [17] |
4 | Reaction product of tetramethyl/burate and resol, | 1270 | 1-3 | [18-19] |
5 | Condensed product of H3BO3 and mannitol product | 1250 | 5 | [20] |
6 | Reaction product of H3BO3 and sucrose | 1300-1600 | 2-3 | [21] |
7 | Condensation product of H3BO3 and glycerin | 1250 | 5 | [22] |
8 | Condensation product of PVA and H3BO3 | 1000 | - | [23-24] |
9 | Mixed solution of citric acid and H3BO3 | 1450 | 2 | [25] |
10 | Solution product of H3BO3 and glucose | 1400 | - | [26] |
11 | Condensation product of H3BO3 and 2-hydroxy benzyl alcohol | 1500 | 4 | [27] |
Table 1 Boron carbide ceramics prepared by oxygen-containing polymeric precursors
Serial no. | Polymeric precursors | Temperature/℃ | Time/h | Ref. |
---|---|---|---|---|
1 | Mixed solution of PVA, H3BO3 and glycerine | 1200-1500 | 3 | [15] |
2 | Reaction product of glycerin, tartaric acid and H3BO3 | 1250 | 0-5 | [16] |
3 | Reaction product of d-mannitol, H3BO3 | 1500 | 3 | [17] |
4 | Reaction product of tetramethyl/burate and resol, | 1270 | 1-3 | [18-19] |
5 | Condensed product of H3BO3 and mannitol product | 1250 | 5 | [20] |
6 | Reaction product of H3BO3 and sucrose | 1300-1600 | 2-3 | [21] |
7 | Condensation product of H3BO3 and glycerin | 1250 | 5 | [22] |
8 | Condensation product of PVA and H3BO3 | 1000 | - | [23-24] |
9 | Mixed solution of citric acid and H3BO3 | 1450 | 2 | [25] |
10 | Solution product of H3BO3 and glucose | 1400 | - | [26] |
11 | Condensation product of H3BO3 and 2-hydroxy benzyl alcohol | 1500 | 4 | [27] |
Fig. 1 SEM image of the product of the PVBO precursor pyrolyzed at 600℃ (a); morphology of product obtained by heat treatment at 1250℃ for 5 h (b)[49]
Fig. 2 SEM images of the boron carbide nanofibers (a)[39], the end of the boron carbide nanocylinders (b)[42], and the nanofibers obtained via electro-spinning (c, d)[53]
Fig. 3 SEM images of fiber (a) polymer fibers and the boron- carbide/silicon-carbide ceramic fibers obtained by pyrolysis at (b) 1000℃, (c) 1300℃ and (d) 1600℃[54]
[1] | VLADISLAV D, SARA R, RICHARD A H, et al.Boron carbide: structure, properties, and stability under stress.J. Am. Ceram. Soc., 2011, 94(11): 3605-3628. |
[2] | ZHANG G J, ZOU J, NI D W, et al.Boride ceramics: densification, microstructure tailoring and properties improvement.J. Inorg. Mater., 2012, 27(3): 225-233. |
[3] | REDDY K M, LIU P, HIRATA A, et al.Atomic structure of amorphous shear bands in boron carbide.Nat. Commun., 2013, 4(9): 2483. |
[4] | JIA B R, QIN M L, LI H, et al.Research progress of boron carbide powder preparation methods.Mater. Lett., 2010, 24(5): 32-38. |
[5] | SURI A K, SUBRAMANIAN C, SONBER J K, et al.Synthesis and consolidation of boron carbide: a review.Int. Mater. Rev., 2010, 55: 4-40. |
[6] | SONBER J K, MURTHY T S R CH, SUBRAMANIAN C, et al. Synthesis, densification and characterization of boron carbide.T. Indian Ceram. Soc., 2013, 72(2): 100-107. |
[7] | ALI O S, BRAND J I.Chemical vapor deposition of boron carbide,Mat. Sci. Eng., 2001, (B79): 191-202. |
[8] | HENRIK P, CARINA H, JENS B, et al.Low temperature CVD of thin, amorphous boron-carbon films for neutron detectors.Chem. Vapor Depos., 2012, 18(7/8/9): 221-224. |
[9] | YAJIMA S, OKAMURAK, HAYASH J, et al.Synthesis of continuous SiC fibers with high tensile strength.J. Am. Ceram. Soc., 1976, 59(7/8): 324-327. |
[10] | GOU Y Z, WANG H, JIAN K, et al.Facile synthesis of melt-spinnable polyaluminocarbosilane using low-softening-point polycarbosilane for Si-C-Al-O fibers,J. Mater. Sci., 2016, 51: 8240-8249. |
[11] | XIE Z F, GOU Y Z.Polyaluminocarbosilane as precursor for aluminium-containing SiC fiber from oxygen-free sources.Ceram. Int., 2016, 42: 10439-10443. |
[12] | BIROT M, PILLOT J P, DUNOGUES J.ChemInform abstract: comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics.Chem. Rev., 1995, 26(46):1443-1477. |
[13] | ZHANG X, DONG Z, HUANG Q, et al.Preparation of zirconium diboride powders by co-pyrolysis of a zirconium-containing organic precursor and polyborazine using a solution based method.Ceram. Int., 2014, 40(9): 15207-15214. |
[14] | COLOMBO P, MERA G, RIEDEL R, et al.Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics.J. Am. Ceram. Soc., 2010, 93(93): 1805-1837. |
[15] | CHEN X W, DONG S M, KAN Y M, et al.Effect of glycerine addition on the synthesis of boron carbide from condensed boric acid-polyvinyl alcohol precursor.RSC Advance, 2016, 6: 9338. |
[16] | NAOKI T, MASAKI K, IKUO Y, et al.Effect of addition of tartaric acid on synthesis of boron carbide powder from condensed boric acid-glycerin product.J. Alloys Compd., 2013, 573: 58-64. |
[17] | TRINADHA R P, ANANTHANSIVAN K, ANTHONYSAMY S.Synthesis of boron carbide from boric oxide-sucrose gel precursor.Powder Technol., 2013, 246: 247-251. |
[18] | NAJAFI A, GOLESTANI-FARD F, REZAIE H R, et al.A novel route to obtain B4C nano powder via Sol-Gel method.Ceram. Int., 2012, 38: 3583-3589. |
[19] | NAJAFI A, GOLESTANI-FARD F, REZAIE H R, et al.Effect of APC addition on precursors properties during synthesis of B4C nano powder by a Sol-Gel process.J. Alloys Compd., 2011, 509: 9164-9170. |
[20] | MASAKI K, YUSUKE T, IKUO Y, et al.Synthesis of boron carbide powder in relation to composition and structural homogeneity of precursor using condensed boric acid-polyol product.Powder Technol., 2012, 221: 257-263. |
[21] | TRINADHA R P, ANANTHASIVAN K, ANTHONYSAMY S, et al.Synthesis of nanocrystalline boron carbide from boric acid- sucrose gel precursor.J. Mater. Sci., 2012, 47: 1710-1718. |
[22] | MASAKI K, NAOKI T, IKUO Y, et al.Low-temperature synthesis of boron carbide powder from condensed boric acid-glycerin product,Mater. Lett., 2011, 65: 1839-1841. |
[23] | BARROS P M, YOSHIDA I V P, SCHIAVON M A. Boron- containing poly(vinyl alcohol) as a ceramic precursor.J. Non-Cryst. Solids, 2006, 352(352): 3444-3450. |
[24] | IKUO Y, RIICHI O, HIDEHIKO K.Synthesis of boron Carbide powder from polyvinyl borate precursor.Mater. Lett., 2009, 63: 91-93. |
[25] | SINHA A, MAHATA T, SHARMA B P.Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor.J. Nucl. Mater., 2002, 301: 165-169. |
[26] | KONNO H, SUDOH A, AOKI Y, et al.Synthesis of C/B4C composites from sugar-boric acid mixed solutions.Mol. Cryst. Liq. Cryst., 2002, 386A(1): 15-20. |
[27] | HASEGAWA I, FUJII Y, TAKAYAMA T, et al.Phenolic resin- boron oxide hybrids as precursors for boron carbide.J. Mater. Sci. Lett., 1999, 18(18): 1629-1631. |
[28] | JOACHIM B, FRITZ A.Precursor-derived covalent ceramics.Adv. Mater., 1995, 7(9): 775-787. |
[29] | RAYMOND H, CHUNG T C.Synthesis and characterization of novel b/c materials prepared by 9-chloroborafluorene precursor.Carbon, 1996, 34(10): 1181-1190. |
[30] | CHASMAWALA M, CHUNG T C.Synthesis of b/c materials from boron containing phenyl acetylides.Carbon, 1997, 35(5): 640-650. |
[31] | MIKE C, YOUMI J, QIANG C, et al.Synthesis of microporous boron-substituted carbon (B/C) materials using polymeric precursors for hydrogen physisorption.J. Am. Chem. Soc., 2008, 130: 6668-6669. |
[32] | MARIO G L, MIRABELLI, SNEDDON L G. Synthesis of boron carbide via poly(vinylpenta-borane) precursors.J. Am. Chem. Soc., 1988, l10: 3305-3307. |
[33] | SNEDDON L G, MARIO G.L. MIRABELLI, et al. Polymeric precursors to boron based ceramics.Pure Appl. Chem., 1991, 63(3): 407-410. |
[34] | PACKIRISAMY S, Decaborane(14)-based polymers.Prog. Polym. Sci, 1996, 21: 707-773. |
[35] | 简科, 王浩, 王军, 等.一种高陶瓷收率聚碳硼烷制备方法, 中国, C08G 79/08, CN104592520A. 2015.05.16. |
[36] | REES W S, SEYFERTH D.Non-polymeric binders for ceramic powders: utilization of neutral and ionic species derived from decaborane(14).J. Mater. Sci., 1989, 24: 4220-4224. |
[37] | REES W S, SEYFERTH D.High-yield synthesis of B4C/BN ceramic materials by pyrolysis of polymeric lewis base adducts of decaborane(14).J. Am. Ceram. Soc., 1988, 71: C194-C196. |
[38] | PENDER M J, CARROLL P J, SNEDDON L G.Transition-metal-promoted reactions of boron hydrides. 17.1 titanium-catalyzed decaborane-olefin hydroborations.J. Am. Chem. Soc., 2001, 123: 12222-12231. |
[39] | PENDER M J, SNEDDON L G.An efficient template synthesis of aligned boron carbide nanofibersusing a single-source molecular precursor.Chem. Mater., 2000, 12: 280-283. |
[40] | FORSTHOEFEL K M, SNEDDON L G.Precursor routes to group 4 metal borides, and metal boride/carbide and metal boride/nitride composites.J. Mater. Sci., 2004, 39(19): 6043-6049. |
[41] | 刘辉, 王应德, 冯春祥, 等. 聚碳硅烷流变性能研究, 合成纤维工业, 2001, 24(5): 23-25. |
[42] | SNEDDON L G, PENDER M J, FORSTHOEFEL K M, et al.Design, syntheses and applications of chemical precursors to advanced ceramic materials in nanostructured forms.J. Eur. Ceram. Soc., 2005, 25(2): 91-97. |
[43] | WEI X L, PATRICK J C, SNEDDON L G.Ruthenium-catalyzed ring-opening polymerization syntheses of poly(organodecaboranes): new single-source boron-carbide precursors.Chem. Mater., 2006, 18:1113-1123. |
[44] | ZHANG X J, LI J, CAO K, et al.Synthesis and characterization of B-C polymer hollow microspheres from a new organodecaborane preceramic polymer.RSC Advances, 2015, 5: 86214-86218. |
[45] | CHATTERJEE S, CARROLL P J, SNEDDON L G.Iridium and ruthenium catalyzed syntheses, hydroborations, and metathesis reactions of alkenyl-decaboranes.Inorg. Chem., 2013, 52(15): 9119-9130. |
[46] | YU X H, CAO K, HUANG Y W, et al.Platinum catalyzed sequential hydroboration of decaborane: a facile approach to poly(alkenyldecaborane) with decaborane in the mainchain.Chem. Commun., 2014, 50: 4585-4587. |
[47] | KUSARI U, LI Y Q, BRADLEY M G, SNEDDON L G.Polyborane reactions in ionic liquids: new efficient routes to functionalized decaborane and o-carborane clusters.J. Am. Chem. Soc., 2004, 126: 8662-8663. |
[48] | LI Y Q, CARROLL P J, SNEDDON L G.Ionic-liquid-promoted decaborane dehydrogenative alkyne-insertion reactions: a new route to o-carboranes.Inorg. Chem., 2008, 47: 9193-9202. |
[49] | MASAKI K, NAOKI T, SATOMI Y, et al.Effect of boron oxide/carbon arrangement of precursor derived from condensed polymer-boric acid product on low-temperature synthesis of boron carbide powder.J. Ceram. Soc. Jpn., 2011, 119(6): 422-425. |
[50] | GAO Y, WILLIAM R, MUHAMMET F T, et al.Improvement of crystallization and particle size distribution of boric acid in the processing of a boron carbide precursor.RSC Advances, 2015, 5: 19067-19073. |
[51] | GAO Y, ANTHONY E, TYLER M, et al.Processing factors influencing the free carbon contents in boron carbide powder by rapid carbothermal reduction.Diam. Relat. Mater., 2016, 61: 14-20. |
[52] | ZHANG D, MCILROY D N, GENG Y, et al.Growth and characterization of boron carbide nanowires.J. Mater. Sci. Lett., 1999, 18(5): 349-351. |
[53] | DANIE T W, JARED D B, WEI X L.Preparation of boron- carbide/carbon nanofibers from a poly(norbornenydecaborane) single-source precursor via electrostatic spinning.Adv. Mater., 2005, 17: 859-862. |
[54] | MARTA M G, WEI X L, DANIEL W, et al.Preceramic polymer blends as precursors for boron-carbide/silicon-carbide composite ceramics and ceramic fibers.Chem. Mater., 2009, 21: 1708-1715. |
[55] | AROATI S, CAFRI M, DILMAN H, et al.Preparation of reaction bonded silicon carbide (RBSC) using boron carbide as an alternative source of carbon.J. Eur. Ceram. Soc., 2011, 31: 841-845. |
[56] | III J P, SUBHASH G, ZHENG J, et al.The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics.J. Eur. Ceram. Soc., 2015, 35(16): 4411-4422. |
[57] | BORCHARDT L, KOCKRICK E, WOLLMANN P, et al.Ordered mesoporous boron carbide based materials via precursor nanocasting.Chem. Mater., 2010, 22: 4660-4668. |
[58] | LU A H, SCHUTH F.Nanocasting: a versatile strtegy for creating nanostrictured porous materials.Adv. Mater., 2006, 18(14): 1793-1805. |
[59] | MALENFANT P R, WAN J, TAYLOR S T, et al.Self-assembly of an organic-inorganic block copolymer for nano-ordered ceramics. Nat. Nanotechnol., 2007, 2(1): 43-46. |
[60] | 简科, 王浩, 王军, 等.一种碳化硼空心微球的制备方法. 中国, C01B31/36, CN104609423A. 2016.06.01. |
[61] | WANG J L, GOU Y Z, WANG H, et al.Boron carbide ceramic hollow microspheres prepared from poly(6-CH2=CH(CH2)4-B10H13) precursor.Mater. Design, 2016, 109: 408-414. |
[62] | YU XIAO-HE, LU TIE-CHENG, LIN TAO, et al.Preparation of boron carbide spherical films and hollow microsphere.J. Inorg. Materials, 2012, 27(12): 1325-1330. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[12] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[13] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[14] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[15] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||