Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (3): 225-233.DOI: 10.15541/jim20150412
• REVIEW • Next Articles
ZHANG Yao-Jun(), YANG Meng-Yang, KANG Le, ZHANG Li, ZHANG Ke
Received:
2015-08-31
Revised:
2015-10-12
Published:
2016-03-20
Online:
2016-02-24
Supported by:
CLC Number:
ZHANG Yao-Jun, YANG Meng-Yang, KANG Le, ZHANG Li, ZHANG Ke. Research Progresses of New Type Alkali-activated Cementitious Material Catalyst[J]. Journal of Inorganic Materials, 2016, 31(3): 225-233.
Fig. 2 Conversion of decane (a) and selectivity for CO2 (solid line) and CO (dot line) (b) over PtNH4-Geo-2 (▲), FeKCa-Geo-2 (○) and CoNH4-Geo-2 (■)[51]
[1] | SALAHUDDIN M B M, NORKHAIRUNNISA M, MUSTAPHA F. A review on thermophysical evaluation of alkali-activated geopolymers.Ceram. Int., 2015, 41: 4273-4281. |
[2] | RASHAD A M.Alkali-activated metakaolin: a short guide for civil engineer - an overview.Constr. Build. Mater., 2013, 41: 751-765. |
[3] | KHALE D, CHAUDHARY R.Mechanism of geopolymerization and factors influencing its development: a review.J. Mater. Sci., 2007, 42: 729-746. |
[4] | PACHECO-TORGAL F, CASTRO-GOMES J, JALALI S.Alkali- activated binders: a review part 1. Historical background, terminology, reaction mechanisms and hydration products.Constr. Build. Mater., 2008, 22: 1305-1314. |
[5] | KOMNITSAS K, ZAHARAKI D.Geopolymerisation: a review and prospects for the minerals industry.Miner. Eng., 2007, 20: 1261-1277. |
[6] | ROY D M.Alkali activated cement opportunities and challenges.Cem. Concr. Res., 1999, 29: 249-254. |
[7] | DUXSON P, FERNANDEZ-JIMENEZ A, PROVIS J L, et al. Geopolymer technology: the current state of the art. J. Mater. Sci., 2007, 42: 2917-2933. |
[8] | DAVIDOVITS J.Geopolymers and geopolymeric new materials.J. Therm. Anal., 1989, 35: 429-441. |
[9] | DAVIDOVITS J.Geopolymers: inorganic polymer new materials.J. Therm. Anal., 1991, 37: 1633-1656. |
[10] | HEITSMANN R F, FITZGERALD M, SAWYER J L.Patent, No.4643137. 1987. |
[11] | MALLICOAT S, SARIN P, KRIVEN W M.Novel alkali-bonded ceramic filtration membranes.Ceram. Eng. Sci. Proc., 2008, 26(8): 37-44. |
[12] | RAHIER H, VAN MELE B, BIESEMANS M, et al. Low-temperature synthesized aluminosilicate glasses. J. Mater. Sci., 1996, 31: 71-79. |
[13] | PURDON A O.The action of alkalis on blast-furnace slag.J. Soc. Chem. Ind., 1940, 59: 191-202. |
[14] | XU H, VAN DEVENTER J S J. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspar.Colloids Surf. A, 2003, 216(1/2/3): 27-44. |
[15] | XU H, VAN DEVENTER J S J. Geopolymerisation of multiple minerals.Miner. Eng., 2002, 15: 1131-1139. |
[16] | FERNANDEZ-JIMENEZ A, PALOMO A, CRIADO M.Microstructure development of alkali-activated fly ash cement: a descriptive model.Cem. Concr. Res., 2005, 35: 1204-1209. |
[17] | FERNANDEZ-JIMENEZ A, PALOMO A, SOBRADOS I, et al. The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater., 2006, 91: 111-119. |
[18] | BELLMANN F, STARK J.Activation of blast furnace slag by a new method.Cem. Concr. Res., 2009, 39: 644-650. |
[19] | CHENG T W, CHIU J P.Fire-resistant geopolymer produced by granulated blast furnace slag.Miner. Eng., 2003, 16: 205-210. |
[20] | SONG S, SOHN D, JENNINGS H M, et al. Hydration of alkali- activated ground granulated balst furnace slag. J. Mater. Sci., 2000, 35: 249-257. |
[21] | ZHANG Y J, ZHAO Y L, LI H H, et al. Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J. Mater. Sci., 2008(43): 7141-7147. |
[22] | XU H, VAN DEVENTER J S J. The geopolymerisation of aluminosilicate minerals.Int. J. Miner. Process., 2000, 59(3): 247-266. |
[23] | YIP C K, VAN DEVENTER J S J. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder.J. Mater. Sci., 2003, 38: 3851-3860. |
[24] | YIP C K, LUKEY G C, VAN DEVENTER J S J. Effect of blast furnace slag addition on microstructure and properties of metakaolinite geopolymeric materials.Ceram. Trans., 2004, 153: 187-209. |
[25] | ZHANG Y J, WANG Y C, XU D L, et al. Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin. Mater. Sci. Eng. A, 527: 2010, 6574-6580. |
[26] | ZHANG Y J, LI S, WANG Y C, et al. Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. J. Non-Crystal. Solids, 2012, 358: 620-624. |
[27] | ZHANG Y J, LI S, XU D L, et al. A novel method for preparation of organic resins reinforced geopolymer composites. J. Mater. Sci., 2010, 45: 1189-1192. |
[28] | YIP C K, LUKEY G C, VAN DEVENTER J S J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.Cem. Concr. Res., 2005, 35: 1688-1697. |
[29] | GORETTA K C, CHEN N, GUTIERREZ-MORA F, et al. Solid-particle erosion of a geopolymer containing fly ash and blast-furnace slag. Wear, 2004, 256: 714-719. |
[30] | OH J E, MONTEIRO P J M, JUN S S, et al. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res., 2010, 40: 189-196. |
[31] | KOMNITSAS K, ZAHARAKI D, PERDIKATSIS V.Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers.J. Hazard. Mater., 2009, 161: 760-768. |
[32] | PAN Z, LI D, YU J, et al. Properties and microstructure of the hardened alkali-activated red mud-slag cementitious material. Cem. Concr. Res., 2003, 33: 1437-1441. |
[33] | ACHECO-TORGAL F, CASTRO-GOMES J, JALALI S.Properties of tungsten mine waste geopolymeric binder.Constr. Build. Mater., 2008, 22: 1201-1211. |
[34] | RODRIGUEZ E D, BERNAL S A, PROVIS J L, et al. Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 2013, 109: 493-502. |
[35] | SINGH P S, BASTOW T, TRIGG M.Structural studies of geopolymers by 29Si and 27Al MAS-NMR.J. Mater. Sci., 2005, 40: 3951-3961. |
[36] | DUXSON P, LUKEY G C, VAN DEVENTER J S J. Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity.Ind. Eng. Chem. Res., 2006, 45(23): 7781-7788. |
[37] | WANG H, LI H, YAN F.Reduction in wear of metakaolinite-based geopolymer composite through filling of PTFE.Wear, 2005, 258(10): 1562-1566. |
[38] | NAIR B G, ZHAO Q, COOPER R F.Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applications.J. Mater. Sci., 2007, 42: 3083-3091. |
[39] | BELL J L, GORDON M, KRIVEN W M.Use of geopolymeric cements as a refractory adhesive for metal and ceramic joins.Ceram. Eng. Sci. Proc., 2005, 26(3): 407-413. |
[40] | GARCIA-LODEIRO I, PALOMO A, FERNANDEZ-JIMENEZ A.Alkali-aggregate reaction in activated fly ash systems.Cem. Concr. Res., 2007, 37(2): 175-183. |
[41] | BAKHAREV T, SANJAYAN J, CHENG Y B.Resistance of alkali- activated slag concrete to acid attack.Cem. Concr. Res., 2003, 33: 1607-1611. |
[42] | SHI C, STEGEMANN J.Acid corrosion resistance of different cementing materials.Cem. Concr. Res., 2000, 30: 803-808. |
[43] | BAKHAREV T, SANJAYAN J G, CHENG Y B.Sulfate attack on alkali-activated slag concrete.Cem. Concr. Res., 2002, 32: 211-216. |
[44] | PALOMO A, BLANCO-VARELA M T, GRANIZO M L, et al. Chemical stability of cementitious materials based on metakaolin. Cem. Concr. Res., 1999, 29(7): 997-1004. |
[45] | ROY D M, JIANG W, SILSBEE M.Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties.Cem. Concr. Res., 2000, 30: 1879-1884. |
[46] | PUERTAS F, AMAT T, FERNANDEZ-JIMENEZ A, et al. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res., 2003, 33: 2031-2036. |
[47] | GLASSER FP.Progress in the immobilization of radioactive wastes in cement, Cem. Concr. Res., 1992, 22: 201-216. |
[48] | VAN JAARSVELD J G S, VAN DEVENTER J S J, SCHWARTZMAN A. The potential use of geopolymeric materials to immobilize toxic metals: part II. Material and leaching characteristics.Miner. Eng., 1999, 12(1): 75-91. |
[49] | QIAN G, SUN D D, TAY J H.Immobilization of mercury and zinc in an alkali-activated slag matrix.J. Hazard. Mater., 2003, 101(1): 65-77. |
[50] | JAN D.Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali- activated slag binders.Cem. Concr. Res., 2002, 32(12): 1971-1979. |
[51] | SAZAMA P, BORTNOVSKY O, DEDECEK J, et al. Geopolymer based catalysts-new group of catalytic materials. Catal. Today, 2011, 164: 92-99. |
[52] | CASCA-TIRADO J R, MANZANO-RAMIREZ A, VILLASENOR- MORA C, et al. Incorporation of photoactive TiO2 in an aluminosilicate inorganic polymer by ion exchange. Microporous Mesoporous Mater., 2012, 153: 282-287. |
[53] | CASCA-TIRADO J R, MANZANO-RAMIREZ A, VAZQUEZ- LANDAVERDE P A, et al. Ion-exchanged geopolymer for photocatalytic degradation of a volatile organic compound. Mater. Lett., 2014, 134: 222-224. |
[54] | CANDAMANO S, FRONTERA P, MACARIO A, et al. Preparation and characterization of active Ni-supported catalyst for syngas production. Chem. Eng. Res. Des., 2015, 96: 78-86. |
[55] | SHARMA S, MEDPELLI D, CHEN S, et al. Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production. RSC Adv., 2015, 5: 65454-65461. |
[56] | ZHANG Y J, LIU L C, XU Y, et al. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water. J. Hazard. Mater., 2012, 209-210: 146-150. |
[57] | KANG L, ZHANG Y J, WANG L L, et al. Alkali-activated steel slag-based mesoporous material as a new photocatalyst for degradation of dye from wastewater. Integr. Ferroelectr., 2015, 162: 8-17. |
[58] | AHMARUZZAMAN M.A review on the utilization of fly ash.Prog. Energy Combust. Sci., 2010, 36(3): 327-363. |
[59] | LI L, WANG S, ZHU Z.Geopolymeric adsorbents from fly ash for dye removal from aqueous solution.J. Colloid Interface Sci., 2006, 300(1): 52-59. |
[60] | AL-ZBOONA K, AL-HARAHSHEH M S, HANI F B. Fly ash-based geopolymer for Pb removal from aqueous solution.J. Hazard. Mater., 2011, 188: 414-421. |
[61] | WANG S, LI L, ZHU Z H.Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater.J. Hazard. Mater., 2007, 139(2): 254-259. |
[62] | HUANG Y, HAN M.The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products.J. Hazard. Mater., 2011, 193: 90-94. |
[63] | CHENG T W, LEE M L, KO M S, et al. The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci., 2012, 56: 90-96. |
[64] | ZHANG Y J, LIU L C.Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater.Particuology, 2013, 11: 353-358. |
[65] | ZHANG Y J, LIU L C, NI, L L, et al. A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 catalyst for treatment of dye wastewater. Appl. Catal. B, 2013, 138-139: 9-16. |
[66] | ZHANG Y J, CHAI Q.Alkali-activated blast furnace slag-based nanomaterial as a novel catalyst for synthesis of hydrogen fuel.Fuel, 2014, 115: 84-87. |
[67] | ZHANG Y J, KANG L, LIU L C, et al. Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance. Appl. Surf. Sci., 2015, 331: 399-406. |
[68] | ZHANG Y J, KANG L, SI H X, et al. A novel alkali-activated magnesium slag based nanocomposite for photocatalytic production of hydrogen. Integr. Ferroelectr., 2014, 154: 120-127. |
[69] | BUTLER M A, GINLEY D S.Prediction of flatband potentials at semiconductorelectrolyte interfaces from atomic electronegativities, J. Electrochem. Soc., 1978, 125: 228-232. |
[70] | XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals.Am. Mineral., 2000, 85: 543-556. |
[71] | ZHANG Y J, KANG L, LIU L C. Alkali-activated Cements for Photocatalytic Degradation of Organic Dyes. in: PACHECO- TORGAL F, LABRINCHA J A, Leonelli LEONELLI C, et al. Handbook of Alkali-activated Cements, Mortars and Concretes, UK: Woodhead Publishing, 2015: 729-777. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||