Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (2): 113-122.DOI: 10.15541/jim20150283
• Orginal Article • Next Articles
ZHANG Chen-Le1,2, ZHANG Pei-Xin1,2, YUN Si-Ning1, LI Yong-Liang2, HE Ting-Shu1
Received:
2015-06-16
Revised:
2015-09-06
Published:
2016-02-20
Online:
2016-01-15
About author:
ZHANG Chen-Le. E-mail: 87611.320@163.com
Supported by:
CLC Number:
ZHANG Chen-Le, ZHANG Pei-Xin, YUN Si-Ning, LI Yong-Liang, HE Ting-Shu. Recent Progress on Preparation of Transition Metal Compounds as Counter Electrodes for Dye-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2016, 31(2): 113-122.
Fig. 1 Schematic for the synthesis of ordered mesoporous TiN-C nanocomposites, photocurrent-voltage curves of DSCs employing the Pt/FTO, and TiN-C/FTO counter electrodes (insets) [22]
Fig. 4 Overall procedure for the fabrication of MS/graphene composite CEs for DSSCs:(a) Reaction equation of MS precursor preparation; (b) Well dispersed MS precursor solutions in acetone and ethanol solvents; (c) Dielectric SiO2 substrate; (d) Graphene film directly grown on SiO2 substrate; (e) MS NPs loaded on the graphene surface; (f) Application of MS/graphene composite CEs in DSSCs[33]
Fig. 6 (a-b) Typical SEM images of cobalt selenide electrode prepared at pH=3.5, (c) typical TEM image of the cobalt selenide layers peeled from the electrodeposited films, and (d) HTEM showing (101) lattice fringes of (c)[43]
Fig. 8 (a) Cyclic voltammograms of the triiodide/iodide redox couple for CoTe, NiTe2 and Pt CEs, (b) nyquist plots of EIS for the symmetrical cells, (c) tafel polarization curves of the symmetrical cells, and (d) J-V curves of the DSCs based on CoTe, NiTe2, and Pt CEs[59]
Fig. 9 (a) SEM image with EDS spectrum (inset); (b) TEM image with high magnification TEM image (inset) acquired from electrospun TiC/C nano-felt; (c) SEM image with EDS spectrum (inset), and (d) TEM image with high magnifycation TEM image (inset) acquired from electrospun TiC/C nano-felt after surface-decoration with Pt NPs[60]
Fig. 11 (a) The projected density of state (DOS) on the d orbital of Pt and Hf atoms, and (b) the atomic distance variation with respect to time for I atoms in I3 and S atoms in T2 on Pt and HfO2[21]
CE catalysts | Substrate | Redox couples | Dye | Jsc/ (mA·cm-2) | Voc/V | FF | PCE/% | Ref |
---|---|---|---|---|---|---|---|---|
C0.85Se | FTO | I-/I3- | N719 | 16.98 | 0.738 | 0.75 | 9.40 | [49] |
TiC | FTO | Co2+/Co3+ | N719 | 9.77 | 0.640 | 0.66 | 4.13 | [63] |
Carbon/SnO2/TiO2 | FTO | I-/I3- | N3 | 12.98 | 0.740 | 0.64 | 6.15 | [66] |
NiO-Pt | FTO | I-/I3- | Ru535 | 0.30 | 0.530 | 0.63 | 2.80 | [71] |
Co9S8 | Mo | I-/I3- | N719 | 13.98 | 0.720 | 0.69 | 6.91 | [32] |
TiN | Ti | I-/I3- | N719 | 15.78 | 0.760 | 0.64 | 7.73 | [67] |
TiN/PEDOT-PSS | Ti | I-/I3- | CYC-B1 | 14.20 | 0.68 | 0.69 | 6.67 | [69] |
NiS | Ni | I-/I3- | N719 | 16.26 | 0.800 | 0.66 | 8.55 | [45] |
TiC | BG/CC | I-/I3- | N719 | 12.98 | 0.790 | 0.56 | 5.71 | [68] |
TiC | PI/CC | I-/I3- | N719 | 12.32 | 0.770 | 0.41 | 3.90 | [68] |
FeS2 | ITO/PEN | I-/I3- | N719 | 15.14 | 0.710 | 0.68 | 7.31 | [31] |
CoS | ITO/PEN | I-/I3- | Z907 | 11.91 | 0.750 | 0.73 | 6.50 | [41] |
TiO2-C | FTO | I-/I3- | Z907 | 12.53 | 0.700 | 0.57 | 5.50 | [70] |
CoS | ITO/PEN | T2/T- | Z907 | 14.60 | 0.643 | 0.49 | 4.60 | [65] |
TiN-C | FTO | T2/T- | N719 | 14.36 | 0.697 | 0.67 | 6.71 | [22] |
Ta3N5/Graphene | FTO | Co2+/Co3+ | FNE29 | 13.53 | 0.837 | 0.69 | 7.85 | [64] |
Table 1 Photovoltaic parameters of dye-sensitized solar cells with different substrates, redox couples, dyes, and CE catalysts
CE catalysts | Substrate | Redox couples | Dye | Jsc/ (mA·cm-2) | Voc/V | FF | PCE/% | Ref |
---|---|---|---|---|---|---|---|---|
C0.85Se | FTO | I-/I3- | N719 | 16.98 | 0.738 | 0.75 | 9.40 | [49] |
TiC | FTO | Co2+/Co3+ | N719 | 9.77 | 0.640 | 0.66 | 4.13 | [63] |
Carbon/SnO2/TiO2 | FTO | I-/I3- | N3 | 12.98 | 0.740 | 0.64 | 6.15 | [66] |
NiO-Pt | FTO | I-/I3- | Ru535 | 0.30 | 0.530 | 0.63 | 2.80 | [71] |
Co9S8 | Mo | I-/I3- | N719 | 13.98 | 0.720 | 0.69 | 6.91 | [32] |
TiN | Ti | I-/I3- | N719 | 15.78 | 0.760 | 0.64 | 7.73 | [67] |
TiN/PEDOT-PSS | Ti | I-/I3- | CYC-B1 | 14.20 | 0.68 | 0.69 | 6.67 | [69] |
NiS | Ni | I-/I3- | N719 | 16.26 | 0.800 | 0.66 | 8.55 | [45] |
TiC | BG/CC | I-/I3- | N719 | 12.98 | 0.790 | 0.56 | 5.71 | [68] |
TiC | PI/CC | I-/I3- | N719 | 12.32 | 0.770 | 0.41 | 3.90 | [68] |
FeS2 | ITO/PEN | I-/I3- | N719 | 15.14 | 0.710 | 0.68 | 7.31 | [31] |
CoS | ITO/PEN | I-/I3- | Z907 | 11.91 | 0.750 | 0.73 | 6.50 | [41] |
TiO2-C | FTO | I-/I3- | Z907 | 12.53 | 0.700 | 0.57 | 5.50 | [70] |
CoS | ITO/PEN | T2/T- | Z907 | 14.60 | 0.643 | 0.49 | 4.60 | [65] |
TiN-C | FTO | T2/T- | N719 | 14.36 | 0.697 | 0.67 | 6.71 | [22] |
Ta3N5/Graphene | FTO | Co2+/Co3+ | FNE29 | 13.53 | 0.837 | 0.69 | 7.85 | [64] |
[1] | O'REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Natrue, 1991, 353(6346): 737-740. |
[2] | GRÄTZEL M. Photoelectrochemical cells.Nature, 2001, 414(6861): 338-344. |
[3] | VOUGIOUKALAKIS G C, PHILIPPOPOULOS A I, STERGIOPOULOS T, et al.Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells.Coordination Chemistry Reviews, 2011, 255(21): 2602-2621. |
[4] | YELLA A, LEE H W, TSAO H N, et al.Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency.Science, 2011, 334(6056): 629-634. |
[5] | HAUCH A, GEORG A.Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells.Electrochimica Acta, 2001, 46(22): 3457-3466. |
[6] | LEE Y L, CHEN C L, CHONG L W, et al.A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells.Electrochemistry Communications, 2010, 12(11): 1662-1665. |
[7] | CHEN L, TAN W, ZHANG J, et al.Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells.Electrochimica Acta, 2010, 55(11): 3721-3726. |
[8] | KAY A, GRÄTZEL M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder.Solar Energy Materials and Solar Cells, 1996, 44(1): 99-117. |
[9] | LEE W J, RAMASAMY E, LEE D Y, et al.Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes.ACS Applied Materials & Interfaces, 2009, 1(6): 1145-1149 . |
[10] | RAMASAMY E, CHUN J, LEE J.Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells.Carbon, 2010, 48(15): 4563-4565. |
[11] | NAM J G, PARK Y J, KIM B S, et al.Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode.Scripta Materialia, 2010, 62(3): 148-150. |
[12] | LEE K M, CHEN P Y, HSU C Y, et al.A high-performance counter electrode based on poly (3, 4-alkylenedioxythiophene) for dye-sensitized solar cells.Journal of Power Sources, 2009, 188(1): 313-318. |
[13] | ZHANG J, HREID T, LI X, et al.Nanostructured polyaniline counter electrode for dye-sensitised solar cells: fabrication and investigation of its electrochemical formation mechanism.Electrochimica Acta, 2010, 55(11): 3664-3668. |
[14] | AMEEN S, AKHTAR M S, KIM Y S, et al.Sulfamic acid-doped polyaniline nanofibers thin film-based counter electrode: application in dye-sensitized solar cells.The Journal of Physical Chemistry C, 2010, 114(10): 4760-4764. |
[15] | MAKRIS T, DRACOPOULOS V, STERGIOPOULOS T, et al.A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes.Electrochimica Acta, 2011, 56(5): 2004-2008. |
[16] | LEVY R B, BOUDART M.Platinum-like behavior of tungsten carbide in surface catalysis.Science, 1973, 181(4099): 547-549. |
[17] | FURIMSKY E.Metal carbides and nitrides as potential catalysts for hydroprocessing.Applied Catalysis A: General, 2003, 240(1): 1-28. |
[18] | WU M, LIN X, WANG Y, et al.Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells.Journal of the American Chemical Society, 2012, 134(7): 3419-3428. |
[19] | WU M, LIN X, WANG L, et al.In situ synthesized economical tungsten dioxide imbedded in mesoporous carbon for dye-sensitized solar cells as counter electrode catalyst.The Journal of Physical Chemistry C, 2011, 115(45): 22598-22602. |
[20] | YUN S, ZHANG H, PU H, et al.Metal oxide/carbide/carbon nanocomposites: in situ synthesis, characterization, calculation, and their application as an efficient counter electrode catalyst for dye-sensitized solar cells.Advanced Energy Materials, 2013, 3(11): 1407-1412. |
[21] | YUN S, PU H, CHEN J, et al.Enhanced performance of supported HfO2 counter electrodes for redox couples used in dye-sensitized solar cells.ChemSusChem, 2014, 7(2): 442-450. |
[22] | RAMASAMY E, JO C, ANTHONYSAMY A, et al.Soft-template simple synthesis of ordered mesoporous titanium nitride-carbon nanocomposite for high performance dye-sensitized solar cell counter electrodes.Chemistry of Materials, 2012, 24(9): 1575-1582. |
[23] | YUN S, HAGFELDT A, MA T.Pt-free counter electrode for dye-sensitized solar cells with high efficiency.Advanced Materials, 2014, 26(36): 6210-6237. |
[24] | GIORDANO C, ERPEN C, YAO W, et al.Metal nitride and metal carbide nanoparticles by a soft urea pathway.Chemistry of Materials, 2009, 21(21): 5136-5144. |
[25] | LIN X, WU M, WANG Y, et al.Novel counter electrode catalysts of niobium oxides supersede Pt for dye-sensitized solar cells.Chemical Communications, 2011, 47(41): 11489-11491. |
[26] | WU M, GUO H, LIN Y N, et al.Synthesis of highly effective vanadium nitride (VN) peas as a counter electrode catalyst in dye-sensitized solar cells.The Journal of Physical Chemistry C, 2014, 118(24): 12625-12631. |
[27] | YUN S, WU M, WANG Y, et al.Pt-like behavior of high-performance counter electrodes prepared from binary tantalum compounds showing high electrocatalytic activity for dye-sensitized solar cells.ChemSusChem, 2013, 6(3): 411-416. |
[28] | YUN S, WANG L, GUO W, et al.Non-Pt counter electrode catalysts using tantalum oxide for low-cost dye-sensitized solar cells.Electrochemistry Communications, 2012, 24(10): 69-73. |
[29] | YUN S, ZHOU H, WANG L, et al.Economical hafnium oxygen nitride binary/ternary nanocomposite counter electrode catalysts for high-efficiency dye-sensitized solar cells.J. Mater. Chem. A, 2013, 1(4): 1341-1348. |
[30] | WU M, ZHANG Q, XIAO J, et al.Two flexible counter electrodes based on molybdenum and tungsten nitrides for dye-sensitized solar cells.Journal of Materials Chemistry, 2011, 21(29): 1761-1766. |
[31] | WANG Y C, WANG D Y, JIANG Y T, et al.FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells.Angew. Chem. Int. Ed. Engl., 2013, 52(26): 6694-6698. |
[32] | CHANG S H, LU M D, TUNG Y L, et al.Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells.ACS Nano, 2013, 7(10): 9443-9451. |
[33] | BI H, ZHAO W, SUN S, et al.Graphene films decorated with metal sulfide nanoparticles for use as counter electrodes of dye- sensitized solar cells.Carbon, 2013, 61(11): 116-123. |
[34] | XIA J, YUAN C, YANAGIDA S.Novel counter electrode V2O5/Al for solid dye-sensitized solar cells.ACS Applied Materials & Interfaces, 2010, 2(7): 2136-2139. |
[35] | DAS S, SUDHAGAR P, NAGARAJAN S, et al.Synthesis of graphene- CoS electro-catalytic electrodes for dye sensitized solar cells.Carbon, 2012, 50(13): 4815-4821. |
[36] | DAS S, SUDHAGAR P, VERMA V, et al.Amplifying charge- transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells.Advanced Functional Materials, 2011, 21(19): 3729-3736. |
[37] | TAI S Y, LIU C J, CHOU S W, et al.Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells.Journal of Materials Chemistry, 2012, 22(47): 24753-24759. |
[38] | LIN J Y, LIAO J H, HUNG T Y.A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells.Electrochemistry Communications, 2011, 13(9): 977-980. |
[39] | XIAO Y, WU J, LIN J Y, et al.Pulse electrodeposition of CoS on MWCNT/Ti as a high performance counter electrode for a Pt-free dye-sensitized solar cell.J. Mater. Chem. A, 2013, 1(4): 1289-1295. |
[40] | XIAO Y, HAN G, CHANG Y, et al.Cobalt sulfide counter electrodes enhanced by a hydro-thermal treatment for use in platinum-free dye-sensitized solar cells.Materials Research Bulletin, 2015, 68: 9-15. |
[41] | WANG M, ANGHEL A M, MARSAN B, et al.CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells.Journal of the American Chemical Society, 2009, 131(44): 15976-15977. |
[42] | WU M S, CHUNG C J, CENG Z Z.Cyclic voltammetric deposition of discrete nickel phosphide clusters with mesoporous nanoparticles on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cells.RSC Adv., 2015, 5(6): 4561-4567. |
[43] | ZHANG Z, PANG S, XU H, et al.Electrodeposition of nanostructured cobalt selenide films towards high performance counter electrodes in dye-sensitized solar cells.RSC Advances, 2013, 3(37): 16528-16534. |
[44] | HU Z, XIA K, ZHANG J, et al.In situ growth of novel laminar- shaped Co3S4 as an efficient counter electrode for dye-sensitized solar cells.RSC Adv., 2014, 4(81): 42917-42923. |
[45] | KE W, FANG G, TAO H, et al.In situ synthesis of NiS nanowall networks on Ni foam as a TCO-free counter electrode for dye-sensitized solar cells.ACS Appl. Mater. Interfaces, 2014, 6(8): 5525-5530. |
[46] | LIAO Y, PAN K, PAN Q, et al.In situ synthesis of a NiS/Ni3S2 nanorod composite array on Ni foil as a FTO-free counter electrode for dye-sensitized solar cells.Nanoscale, 2015, 7(5): 1623-1626. |
[47] | ZHAO W, LIN T, SUN S, et al.Oriented single-crystalline nickel sulfide nanorod arrays: “two-in-one” counter electrodes for dye-sensitized solar cells.Journal of Materials Chemistry A, 2013, 1(2): 194-198. |
[48] | KIM H J, KIM C W, PUNNOOSE D, et al.Nickel doped cobalt sulfide as a high performance counter electrode for dye-sensitized solar cells.Applied Surface Science, 2015, 328: 78-85. |
[49] | GONG F, WANG H, XU X, et al.In situ growth of Co(0.85)Se and Ni(0.85)Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells.Journal of the American Chemical Society, 2012, 134(26): 10953-10958. |
[50] | GONG F, XU X, LI Z, et al.NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells.Chemical Communications, 2013, 49(14): 1437-1439. |
[51] | CHI W S, HAN J W, YANG S, et al.Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes.Chemical Communications, 2012, 48(76): 9501-9503. |
[52] | SONG J, LI G R, XIONG F Y, et al.Synergistic effect of molybdenum nitride and carbon nanotubes on electrocatalysis for dye-sensitized solar cells.Journal of Materials Chemistry, 2012, 22(38): 20580-20585. |
[53] | YUE G, WU J, LIN J Y, et al.A counter electrode of multi-wall carbon nanotubes decorated with tungsten sulfide used in dye-sensitized solar cells.Carbon, 2013, 55(1): 1-9. |
[54] | GUO J, SHI Y, ZHU C, et al.Cost-effective and morphology- controllable niobium diselenides for highly efficient counter electrodes of dye-sensitized solar cells.Journal of Materials Chemistry A, 2013, 1(38): 11874-11879. |
[55] | JANG J S, HAM D J, RAMASAMY E, et al.Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells.Chemical Communications, 2010, 46(45): 8600-8602. |
[56] | ZHOU H, SHI Y, DONG Q, et al.Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells.Journal of Materials Chemistry A, 2014, 2(12): 4347-4354. |
[57] | ZHOU H, SHI Y, WANG L, et al.Notable catalytic activity of oxygen-vacancy-rich WO(2.72) nanorod bundles as counter electrodes for dye-sensitized solar cells.Chemical Communications, 2013, 49(69): 7626-7628. |
[58] | DOU Y Y, LI G R, SONG J, et al.Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells.Physical Chemistry Chemical Physics: PCCP, 2012, 14(4): 1339-1342. |
[59] | GUO J, SHI Y, CHU Y, et al.Highly efficient telluride electrocatalysts for use as Pt-free counter electrodes in dye-sensitized solar cells.Chemical Communications, 2013, 49(86): 10157-10159. |
[60] | ZHAO Y, THAPA A, FENG Q, et al.Electrospun TiC/C nano-felt surface-decorated with Pt nanoparticles as highly efficient and cost-effective counter electrode for dye-sensitized solar cells.Nanoscale, 2013, 5(23): 11742-11747. |
[61] | HOU Y, WANG D, YANG X, et al.Rational screening low-cost counter electrodes for dye-sensitized solar cells.Nature Communications, 2013, 4(3): 1583-1591. |
[62] | YUN S, HAGFELDT A, MA T.Superior catalytic activity of sub- 5 μm-thick Pt/SiC films as counter electrodes for dye-sensitized solar cells.Chem. Cat. Chem., 2014, 6(6): 1584-1588. |
[63] | WANG L, DIAU E W, WU M, et al.Highly efficient catalysts for Co(II/III) redox couples in dye-sensitized solar cells.Chemical Communications, 2012, 48(20): 2600-2602. |
[64] | WANG H, FENG Q, GONG F, et al.In situ growth of oriented polyaniline nanowires array for efficient cathode of Co(iii)/Co(ii) mediated dye-sensitized solar cell.J. Mater. Chem. A, 2013, 1(1): 97-104. |
[65] | BURSCHKA J, BRAULT V, AHMAD S, et al.Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte.Energy & Environmental Science, 2012, 5(3): 6089-6097. |
[66] | SUN W, SUN X, PENG T, et al.A low cost mesoporous carbon/SnO2/TiO2 nanocomposite counter electrode for dye-sensitized solar cells.Journal of Power Sources, 2012, 201(1): 402-407. |
[67] | JIANG Q W, LI G R, GAO X P.Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells.Chemical Communications, 2009, 45(44): 6720-6722. |
[68] | WANG Y, WU M, LIN X, et al.Several highly efficient catalysts for Pt-free and FTO-free counter electrodes of dye-sensitized solar cells.Journal of Materials Chemistry, 2012, 22(9): 4009-4014. |
[69] | YEH M H, LIN L Y, LEE C P, et al.A composite catalytic film of PEDOT:PSS/TiN-NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell.Journal of Materials Chemistry, 2011, 21(47): 19021-19029. |
[70] | JOSHI P, XIE Y, ROPP M, et al. Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode. Energy & Environmental Science, 2009, 2(4): 426-429. |
[71] | KIM S, PARK K, YUM J, et al.Pt-NiO nanophase electrodes for dye-sensitized solar cells.Solar Energy Materials and Solar Cells, 2006, 90(3): 283-290. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||