Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (11): 1205-1211.DOI: 10.15541/jim20160109
• Orginal Article • Previous Articles Next Articles
LI Jun1, PAN Lei1, WANG Ji-Tong1, LONG Dong-Hui1, QIAO Wen-Ming1,2, LING Li-Cheng1
Received:
2016-03-01
Revised:
2016-04-14
Published:
2016-11-10
Online:
2016-10-25
About author:
LI Jun. E-mail: lijun8540870@163.com
Supported by:
CLC Number:
LI Jun, PAN Lei, WANG Ji-Tong, LONG Dong-Hui, QIAO Wen-Ming, LING Li-Cheng. Low-temperature Removal of NO by Spherical Activated Carbon Loaded with MnOx-CeO2 and Melamine[J]. Journal of Inorganic Materials, 2016, 31(11): 1205-1211.
Sample | SBET/(m2·g-1) | Smic/(m2·g-1) | Vt/(cm3·g-1) | Vmic/(cm3·g-1) |
---|---|---|---|---|
SAC | 1411 | 1295 | 0.62 | 0.52 |
400-8(Mn-Ce)/SAC | 710 | 648 | 0.32 | 0.26 |
400-8(Mn-Ce)/SAC-5 | 661 | 603 | 0.29 | 0.25 |
400-8(Mn-Ce)/SAC-10 | 578 | 528 | 0.26 | 0.22 |
400-8(Mn-Ce)/SAC-15 | 476 | 428 | 0.22 | 0.17 |
400-8(Mn-Ce)/SAC-20 | 392 | 355 | 0.18 | 0.14 |
Table 1 Porosity parameters of SAC and 400-8(Mn-Ce)/SAC with different melamine loadings
Sample | SBET/(m2·g-1) | Smic/(m2·g-1) | Vt/(cm3·g-1) | Vmic/(cm3·g-1) |
---|---|---|---|---|
SAC | 1411 | 1295 | 0.62 | 0.52 |
400-8(Mn-Ce)/SAC | 710 | 648 | 0.32 | 0.26 |
400-8(Mn-Ce)/SAC-5 | 661 | 603 | 0.29 | 0.25 |
400-8(Mn-Ce)/SAC-10 | 578 | 528 | 0.26 | 0.22 |
400-8(Mn-Ce)/SAC-15 | 476 | 428 | 0.22 | 0.17 |
400-8(Mn-Ce)/SAC-20 | 392 | 355 | 0.18 | 0.14 |
Fig. 4 Reactivity of NO with melamine on 400-8(Mn-Ce)/ SAC-10Reaction conditions: 0.1% NO, 8% O2, balance N2, reaction temperature = 180℃, space velocity = 6000 h-1
Fig. 5 Effect of calcination temperature on NOx conversion over melamine-supported catalystsReaction conditions: 0.1% NO, 8% O2, balance N2, reaction temperature = 180℃, space velocity= 6000 h-1
Fig. 6 Effect of metal oxides loading on NOx conversion over melamine-supported catalystsReaction conditions: 0.1% NO, 8% O2, balance N2, reaction temperature = 180℃, space velocity = 6000 h-1
Fig. 7 Effect of melamine loading on NOx conversion over melamine-supported 400-8(Mn-Ce)/SACReaction conditions: 0.1% NO, 8% O2, balance N2, reaction temperature = 180℃, space velocity = 6000 h-1
Material balance | 400-8(Mn-Ce)/SAC-5 | 400-8(Mn-Ce)/SAC-10 | 400-8(Mn-Ce)/SAC-15 | 400-8(Mn-Ce)/SAC-20 |
---|---|---|---|---|
Amount of melamine on sample /×10-4 mol | 2.02 | 4.04 | 6.06 | 8.08 |
Breakthrough time(BTT) /h | 4.20 | 8.80 | 13.80 | 18.50 |
Total amount of supplied net NO until BTT /×10-4 mol | 11.30 | 23.70 | 37.10 | 49.80 |
Ratio of reacted NO to supplied net NO /% | 99.50 | 99.60 | 99.40 | 96.80 |
Amount of removed NO /× 10-4 mol | 11.20 | 23.60 | 36.90 | 48.20 |
Mole ratio of reacted NO to melamine on the catalyst | 5.50 | 5.80 | 6.10 | 6.00 |
Table 2 Mole ratio of reacted NO to melamine supported on 400-8(Mn-Ce)/SAC
Material balance | 400-8(Mn-Ce)/SAC-5 | 400-8(Mn-Ce)/SAC-10 | 400-8(Mn-Ce)/SAC-15 | 400-8(Mn-Ce)/SAC-20 |
---|---|---|---|---|
Amount of melamine on sample /×10-4 mol | 2.02 | 4.04 | 6.06 | 8.08 |
Breakthrough time(BTT) /h | 4.20 | 8.80 | 13.80 | 18.50 |
Total amount of supplied net NO until BTT /×10-4 mol | 11.30 | 23.70 | 37.10 | 49.80 |
Ratio of reacted NO to supplied net NO /% | 99.50 | 99.60 | 99.40 | 96.80 |
Amount of removed NO /× 10-4 mol | 11.20 | 23.60 | 36.90 | 48.20 |
Mole ratio of reacted NO to melamine on the catalyst | 5.50 | 5.80 | 6.10 | 6.00 |
Fig. 8 Effect of reaction temperature on NOx conversion over 400-8(Mn-Ce)/SAC-10Reaction conditions: 0.1% NO, 8% O2, balance N2, space velocity = 6000 h-1
Fig. 9 Effect of (a) NO concentration and (b) O2 concentration on NOx conversion over 400-8(Mn-Ce)/SAC-10Reaction conditions: 0.01%~0.1% NO, 0~8% O2, balance N2, reaction temperature = 180℃, space velocity = 6000 h-1
Fig. 10 Effect of space velocity on NOx conversion over 400-8(Mn-Ce)/SAC-10Reaction conditions: 0.1% NO, 8% O2, balance N2, reaction temperature = 180℃
[1] | BOSCH H, JANSSEN F.Catalytic reduction of nitrogen oxides: A review on the fundamentals and technology. Catalysis Today, 1988, 2(4): 369-532. |
[2] | YUAN CONG-HUI, LIU HUA-YAN, LU HAN-FENG, et al.Catalytic oxidation-reductive absorption process for NOx removal in humid waste gas.Chinese Journal of Environmental Engineering, 2008, 2(9): 1207-1212. |
[3] | YAO YAO, ZHANG SHU-LE, ZHONG QIN, et al.Low temperature selective catalytic reduction of NO over manganese supported on TiO2 nanotubes. Journal of Fuel Chemistry and Technology, 2011, 39(9): 694-701. |
[4] | AN ZHONG-YI, ZHUO YU-QUN, CHEN CHANG-HE.Influence of calcinations temperature on the catalytic activity of Mn/TiO2 for NO oxidation.Journal of Fuel Chemistry and Technology, 2014, 42(3): 370-376. |
[5] | GUO JING, LI CAI-TING, LU PEI, et al.Research on SCR Denitrification of MnOx/Al2O3 modified by CeO2 and its mechanism at low temperature.Environmental Science, 2011, 32(8): 2240-2246. |
[6] | LI LI, HUANG HUA-CUN, WEI TENG-YOU, et al.Influence of cerium additive on selective catalytic reduction of NOx with MnOx/ACFN catalyst. Chemical industry and Engineering progress, 2013, 32(11): 2655-2660. |
[7] | WANG YAN-LI, LI XIAO-XIAO, ZHAN LIANG, et al.Effect of metal additives on the catalytic performance of MnOx-CeO2 supported on activated carbon honeycomb in NO removal at low temperature. Journal of Fuel Chemistry and Technology, 2014, 42(11): 1365-1371. |
[8] | OZKAN U S, KUMTHEKAR M W, CAI Y P.Selective catalytic reduction of nitric oxide over vanadia/titania catalysts: temperature-programmed desorption and isotopically labeled oxygen-exchange studies.Industrial & Engineering Chemistry Research, 1994, 33(12): 2924-2929. |
[9] | SHIRAHAMA N, MOCHIDA I, KORAI Y, et al.Reaction of NO2 in air at room temperature with urea supported on pitch based activated carbon fiber.Applied Catalysis B: Environmental, 2004, 52(3): 173-179. |
[10] | SHIRAHAMA N, MOCHIDA I, KORAI Y, et al.Reaction of NO with urea supported on activated carbons. Applied Catalysis B: Environmental, 2005, 57(4): 237-245. |
[11] | MIYAWAKI J, SHIMOHARA T, SHIRAHAMA N, et al.Removal of NOx from air through cooperation of the TiO2 photocatalyst and urea on activated carbon fiber at room temperature.Applied Catalysis B: Environmental, 2011, 110: 273-278. |
[12] | WANG Z, WANG Y L, WANG D J, et al.Low-temperature selective catalytic reduction of NO with urea supported on pitch-based spherical activated carbon.Industrial & Engineering Chemistry Research, 2010, 49(14): 6317-6322. |
[13] | WANG Z, WANG Y L, LONG D H, et al.Kinetics and mechanism study of low-temperature selective catalytic reduction of NO with urea supported on pitch-based spherical activated carbon.Industrial & Engineering Chemistry Research, 2011, 50(10): 6017-6027. |
[14] | ZENG Z, LU P, LI C, et al.Selective catalytic reduction (SCR) of NO by urea loaded on activated carbon fiber (ACF) and CeO2/ACF at 30℃: The SCR mechanism.Environmental Technology, 2012, 33(11): 1331-1337. |
[15] | LU P, ZENG Z, LI C T, et al.Room temperature removal of NO by activated carbon fibres loaded with urea and La2O3. Environmental Technology, 2012, 33(9): 1029-1036. |
[16] | CHEN H Y, VOSKOBOINIKOV T, SACHTLER W M H. Reaction intermediates in the selective catalytic reduction of NOx over Fe/ZSM-5. Journal of Catalysis, 1999, 186(1): 91-99. |
[17] | JOUBERT E, COURTOIS X, MARECOT P, et al.The chemistry of DeNOx reactions over Pt/Al2O3: the oxime route to N2 or N2O.Journal of Catalysis, 2006, 243(2): 252-262. |
[18] | YANG JUN-BING, KANG FEI-YU.Activated carbon spheres and their applications.Materials Review, 2002, 16(5): 59-61. |
[19] | MACHIDA M, KUROGI D, KIJIMA T, et al.MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Selective reduction of sorbed NOx.Chemistry of Materials, 2000, 12(10): 3165-3170. |
[20] | MACHIDA M, UTO M, KUROGI D, et al.Solid-gas interaction of nitrogen oxide adsorbed on MnOx-CeO2: a DRIFTS study. Journal of Materials Chemistry, 2001, 11: 900-904. |
[21] | QI G, YANG R T.Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3.The Journal of Physical Chemistry B, 2004, 108(40): 15738-15747. |
[22] | QI G, YANG R T, CHANG R.MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 2004, 51(2): 93-106. |
[23] | ETTIREDDY P R, ETTIREDDY N, SMIRNIOTIS P G, et al.Investigation of the selective catalytic reduction of nitric oxide with ammonia over Mn/TiO2 catalysts through transient isotopic labeling and in situ FT-IR studies.Journal of Catalysis, 2012, 292: 53-63. |
[24] | XIE J L, FANG D, CHEN X L, et al.Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature.Catalysis Communications, 2012, 28: 77-81. |
[1] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[2] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
[3] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[4] | LI Shiqi, BAO Qunqun, HU Ping, SHI Jianlin. Anti-metastatic Immunotherapy of Advanced Tumors Based on EDTA Intercalated Zinc-aluminum Layered Double Hydroxide [J]. Journal of Inorganic Materials, 2024, 39(9): 1044-1052. |
[5] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[6] | PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao. High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method [J]. Journal of Inorganic Materials, 2024, 39(8): 911-919. |
[7] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[8] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[9] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[10] | SHI Tong, GAN Qiaowei, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang. Boost Electrochemical Reduction of CO2 to Formate Using a Self-supporting Bi@Cu Nanotree Electrode [J]. Journal of Inorganic Materials, 2024, 39(7): 810-818. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | CAI Heqing, HAN Lu, YANG Songsong, XUE Xinyu, ZHANG Kou, SUN Zhicheng, LIU Ruping, HU Kun, WEI Yan. Fe3O4-DMSA-PEI Magnetic Nanoparticles with Small Particle Size: Preparation and Gene Loading [J]. Journal of Inorganic Materials, 2024, 39(5): 517-524. |
[13] | LI Guangyu, YUE Yifan, WANG Bo, ZHANG Chengyu, SUO Tao, LI Yulong. Damage of 2D-SiC/SiC Composites under Projectile Impact and Tensile Properties after Impact [J]. Journal of Inorganic Materials, 2024, 39(5): 494-500. |
[14] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
[15] | JIN Min, MA Yupeng, WEI Tianran, LIN Siqi, BAI Xudong, SHI Xun, LIU Xuechao. Growth and Characterization of Large-size InSe Crystal from Non-stoichiometric Solution via a Zone Melting Method [J]. Journal of Inorganic Materials, 2024, 39(5): 554-560. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||