Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (11): 1157-1165.DOI: 10.15541/jim20160119
• Orginal Article • Next Articles
YUAN Qin, SONG Yong-Cai
Received:
2016-03-03
Revised:
2016-05-04
Published:
2016-11-10
Online:
2016-10-25
About author:
YUAN Qin. E-mail: yinzi863@163.com
CLC Number:
YUAN Qin, SONG Yong-Cai. Research and Development of Continuous SiC Fibers and SiCf/SiC Composities[J]. Journal of Inorganic Materials, 2016, 31(11): 1157-1165.
Generation | First | Second | Third | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Trade mark | Nicalon | Tyranno LOX-M | Hi-Nicalon | UF | Hi-Nicalon S | Tyranno SA3 | Sylramic | UF-HM | ||
Cross-linking method | Oxygen | Oxygen | Electron irradiation | non | Electron irradiation | Oxygen | Oxygen | non | ||
Production Temperature/℃ | 1200 | 1200 | 1300 | 1400 | >1500 | >1700 | >1700 | >1700 | ||
Element Compostion/wt% | 56Si+ 32C+ 12O | 54Si+ 32C+ 12O+2Ti | 63Si+ 37C+ 0.5O | 60Si+ 39C+ 1O | 69Si+ 31C+ 0.2O | 68Si+ 32C+ 0.6Al | 67Si+29C+ 0.8O+ 3.2B+0.4N +2.1Ti | 67Si+ 31C+ 2B | ||
Crystal state | Amorphous | Microcrystalline | Polycrystalline | |||||||
Crystalline size/nm | 2-3 | 2-3 | 5-10 | ≤5 | 20 | >60 | 40~60 | >50 | ||
Fiber diameter/μm | 14 | 11 | 12 | 10-15 | 12 | 7.5 | 10 | 10-15 | ||
Density/(g·cm-3) | 2.55 | 2.48 | 2.74 | 2.70 | 3.05 | 3.10 | 3.05 | 3.10 | ||
Tensile strength at RT/GPa | 3.0 | 3.3 | 2.8 | 2.8-3.5 | 2.6 | 2.9 | 3.0 | 2.1-3.5 | ||
Young’s modulus at RT/GPa | 200 | 185 | 270 | N/A | 400 | 375 | 400 | N/A | ||
Thermal conductivity /(W·mK) | 3 | 1.5 | 8 | N/A | 18 | 65 | 40 | N/A | ||
Cost (US$/kg) | 2000 | 1250 | 8000 | N/A | 13000 | 5000 | 10000 | N/A |
Table 1 Details of composition, structure, properties, and cost of three generations SiC based fibers[7-13]
Generation | First | Second | Third | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Trade mark | Nicalon | Tyranno LOX-M | Hi-Nicalon | UF | Hi-Nicalon S | Tyranno SA3 | Sylramic | UF-HM | ||
Cross-linking method | Oxygen | Oxygen | Electron irradiation | non | Electron irradiation | Oxygen | Oxygen | non | ||
Production Temperature/℃ | 1200 | 1200 | 1300 | 1400 | >1500 | >1700 | >1700 | >1700 | ||
Element Compostion/wt% | 56Si+ 32C+ 12O | 54Si+ 32C+ 12O+2Ti | 63Si+ 37C+ 0.5O | 60Si+ 39C+ 1O | 69Si+ 31C+ 0.2O | 68Si+ 32C+ 0.6Al | 67Si+29C+ 0.8O+ 3.2B+0.4N +2.1Ti | 67Si+ 31C+ 2B | ||
Crystal state | Amorphous | Microcrystalline | Polycrystalline | |||||||
Crystalline size/nm | 2-3 | 2-3 | 5-10 | ≤5 | 20 | >60 | 40~60 | >50 | ||
Fiber diameter/μm | 14 | 11 | 12 | 10-15 | 12 | 7.5 | 10 | 10-15 | ||
Density/(g·cm-3) | 2.55 | 2.48 | 2.74 | 2.70 | 3.05 | 3.10 | 3.05 | 3.10 | ||
Tensile strength at RT/GPa | 3.0 | 3.3 | 2.8 | 2.8-3.5 | 2.6 | 2.9 | 3.0 | 2.1-3.5 | ||
Young’s modulus at RT/GPa | 200 | 185 | 270 | N/A | 400 | 375 | 400 | N/A | ||
Thermal conductivity /(W·mK) | 3 | 1.5 | 8 | N/A | 18 | 65 | 40 | N/A | ||
Cost (US$/kg) | 2000 | 1250 | 8000 | N/A | 13000 | 5000 | 10000 | N/A |
[1] | MADAR R.Silicon carbide in contention.Nature, 2004, 430(7003): 974-975. |
[2] | EVANS A G.Prospective on the development of high toughness ceramics.J. Am. Ceram. Soc., 1990, 73(2): 187-206. |
[3] | MA QING-SONG, LIU HAI-TAO, PAN YU, et al.Research progress on the application of C/SiC composites in scramjet.Journal of Inorganic Materials, 2013, 28(3): 247-255. |
[4] | YAJIMA S, HAYASHI J, OMORI M, et al.Development of a SiC fiber with high tensile strength.Nature, 1976, 261(5562): 683-685. |
[5] | YAJIMA S, HASEGAWA Y, HAYASHI J, et al.Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus. I. Synthesis of polycarbosilane as precursor.J. Mater. Sci., 1978, 13(12): 2569-2576. |
[6] | HASEGAWA Y, IIMURA M, YAJIMA S.Synthesis of continuous silicon carbide fibre. II Conversion of polycarbosilane fibre into silicon carbide fibres.J. Mater. Sci., 1980, 15(3): 720-728. |
[7] | BUNSELL A R, PIANT A.A review of the development of three generations of small diameter silicon carbide fibres.J. Mater. Sci., 2006, 41(3): 823-839. |
[8] | NASLAIN R.Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview.Compos. Sci. Technol., 2004, 64(2): 155-170. |
[9] | ZHAO DA-FANG, WANG HAI-ZHE, LI XIAO-DONG.Development of polymer-derived SiC fiber.Journal of Inorganic Materials, 2009, 24(6): 1097-1104. |
[10] | ISHIKAWA T.Advances in inorganic fibers.Adv. Polym. Sci., 2005, 178: 109-144. |
[11] | SACKS M D.Effect of composition and heat treatment conditions on the tensile strength and creep resistance of SiC-based fibers. J. Eur. Ceram. Soc., 1999, 19(13/14): 2305-2315. |
[12] | SACKS M, SCHEIFFELE G, ZHANG L, et al.Polymer-derived SiC-based fibers with high tensile strength and improved creep resistance. Ceram. Eng. Sci. Proc., 1988, 19(3): 73-86. |
[13] | ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al.High-strength alkali-resistant sintered SiC fiber stable to 2200℃.Nature, 1998, 391(6669): 773-775. |
[14] | WANG DE-YIN, MAO XIAN-HE, SONG YONG-CAI, et al.Preparation and properties of SiC fiber with a stable excess carbon layer on the surface.Journal of Inorganic Materials, 2009, 24(6): 1209-1213. |
[15] | COUSTUMER P L, MONTHIOUX M, OBERLIN A.Understanding Nicalon fibre.J. Eur. Ceram. Soc., 1993, 11(2): 95-103. |
[16] | WANG DE-YIN, SONG YONG-CAI, JIAN KE.Effect of composition and structure on the specific resistivity of continuous silicon carbide fibers.Journal of Inorganic Materials, 2012, 27(2): 162-168. |
[17] | SHIMOO T, CHEN H, OKAMURA K.High-temperature stability of Nicalon under Ar or O2 atmosphere.J. Mater. Sci., 1994, 29(2): 456-463. |
[18] | JOHNSON S M, BRITTAIN R D, LAMOREAUX R H, et al.Degradation mechanisms of silicon carbide fibers.J. Am. Ceram. Soc., 1988, 71(3): 132-135. |
[19] | SUGIMOTO M, SHIMOO T, OKAMURA K, et al.Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: I, Evolved gas analysis. J. Am. Ceram. Soc., 1995, 78(8): 1013-1017. |
[20] | TAKI T, OKAMURA K, SATO M, et al.A study on the electron irradiation curing mechanism of polycarbosilane fibers by solid-state 29Si high-resolution nuclear magnetic resonance spectroscopy.J. Mater. Sci. Lett., 1988, 7(3): 209-211. |
[21] | HASEGAWA Y.Si-C fiber prepared from polycarbosilane cured without oxygen.J. Inorg. Organomet. P., 1992, 2(1): 161-169. |
[22] | MAO X H, SONG Y C, LI W, et al.Mechanism of curing process for polycarbosilane fiber with cyclohexene vapor.J. Appl. Polym. Sci., 2007, 105(3): 1651-1657. |
[23] | TOREKI W, BATICH C D, SACKS M D, et al.Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability.Compos. Sci. Technol., 1994, 51(2): 145-159. |
[24] | XUE JIN-GEN, WANG YING-DE, SONG YONG-CAI.Preparation of low oxygen SiC fiber by dry spinning.Journal of Inorganic Materials, 2007, 22(4): 681-684. |
[25] | TAKEDA M, IMAI YOSHIKAZU, ICHIKAWA HIROSHI, et al.Thermal stability of SiC fiber prepared by an irradiation-curing process.Compos. Sci. Technol., 1999, 59(6): 793-799. |
[26] | CHOLLON G, PAILLER R, NASLAIN R, et al.Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi- Nicalon).J. Mater. Sci., 1997, 32(2): 327-347. |
[27] | SHIMOO T, OKAMURA K, MUTOH W.Oxidation behavior and mechanical properties of low-oxygen SiC fibers prepared by vacuum heat-treatment of electron-beam-cured poly(carbosilane) precursor.J. Mater. Sci., 2003, 38(8): 1653-1660. |
[28] | BODET R, BOURRAT X, LAMON J, et al.Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content.J. Mater. Sci., 1995, 30(3): 661-677. |
[29] | TAKEDA M, SAKAMOTO J, IMAI Y, et al.Properties of stoichiometric silicon carbide fiber derived from polycarbosilane.Ceram. Eng. Sci. Proc., 1994, 15(4): 133-141. |
[30] | TAKEDA M, SAEKI A, SAKAMOTO J, et al.Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers.J. Am. Ceram. Soc., 2000, 83(5): 1063-1069. |
[31] | LIPOWITZ J, RABE J A, ZANGVIL A, et al.Structure and properties of Sylramic silicon carbide fiber-a polycrystalline, stoichiometric β-SiC composition.Ceram. Eng. Sci. Proc., 1997, 18(3): 147-157. |
[32] | TAKEDA M, SAEKI A, SAKAMOTO J, et al.Properties of polycarbosilane-derived silicon carbide fibers with various C/Si compositions.Compos. Sci. Technol., 1999, 59(6): 787-792. |
[33] | SHA J J, HINOKI T, KOHYAMA A.Microstructural characterization and fracture properties of SiC-based fibers annealed at elevated temperatures. J. Mater. Sci., 2007, 42(13): 5046-5056. |
[34] | IVEKOVIC A, NOVAK S, DRAZIC G, et al.Current status and prospects of SiCf/SiC for fusion structural applications.J. Eur. Ceram. Soc., 2013, 33(10): 1577-1589. |
[35] | DICARLO J A.Creep limitations of current polycrystalline ceramic fibers.Compos. Sci. Technol., 1994, 51(2): 213-217. |
[36] | LI YONG-QIANG, SONG YONG-CAI.Synthesis and spinnability of the high softening-point polycarbosilane.Chem. J. Chinese Universities, 2014, 35(10): 2272-2280. |
[37] | LI YONG-QIANG, SONG YONG-CAI, YUAN QIN.Synthesis and spinnability of the high softening-point polycarbosilane via bridge method.Acta Polymerica Sinica, 2015(2): 186-196. |
[38] | YUAN QIN, SONG YONG-CAI, WANG GUO-DONG.Adjusting the oxygen content of the cured polyaluminocarbosilane fibers.Chem. J. Chinese Universities, 2015, 36(6): 1213-1220. |
[39] | YUAN QIN, SONG YONG-CAI, WANG GUO-DONG.Studies on the air curing and oxygen control of polyaluminocarbosilane fibers with different Al contents.Acta Polymerica Sinica, 2016(2): 155-163. |
[40] | YUAN QIN, SONG YONG-CAI.Effects of Al and O content on the transformation from SiAlCO to Si(Al)C fibers after high temperature treatment.Journal of Inorganic Materials, 2016, 31(4): 393-400. |
[41] | SU Z, ZHANG L, LI Y, et al.Rapid preparation of SiC fibers using a curing route of electron irradiation in a low oxygen concentration atmosphere.J. Am. Ceram. Soc., 2015, 98(7): 2014-2017. |
[42] | TANG X, ZHANG L, TU H, et al.Decarbonization mechanisms of polycarbosilane during pyrolysis in hydrogen for preparation of silicon carbide fibers.J. Mater. Sci., 2010, 45(21): 5749-5755. |
[43] | ZHAO S, ZHOU X, YU J.Effect of heat treatment on the mechanical properties of PIP-SiC/SiC composites fabricated with a consolidation process.Ceram. Int., 2014, 40(3): 3879-3885. |
[44] | HE XIN-BO, QU XUAN-HUI, YE BIN.Preparation and mechanical properties of SiCf/SiC composites.Journal of Inorganic Materials, 2005, 20(3): 677-684. |
[45] | ZHAO SHUANG, YANG ZI-CHUN, ZHOU XIN-GUI.Fracture behavior of SiC/SiC composites with different interfaces.Journal of Inorganic Materials, 2016, 31(1): 58-62. |
[46] | KOTANI M, INOUE T, KOHYAMA A, et al.Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite.Mater. Sci. Eng. A, 2003, 357(1/2): 376-385. |
[47] | KOTANI M, INOUE T, KOHYAMA A, et al.Consolidation of polymer-derived SiC matrix composites: processing and microstructure. Compos. Sci. Technol., 2002, 62(16): 2179-2188. |
[48] | INTERRANTE L V, WHITMARSH C W, SHERWOOD W, et al.High yield polycarbosilane precursors to stoichiometric SiC synthesis, pyrolysis and application.Pro. Mater. Res. Soc., 1994, 346: 593-603. |
[49] | RUSHKIN I L, SHEN Q, LEHMAN S E, et al.Modification of a hyperbranched hydridopolycarbosilane as a route to new polycarbosilanes.Macromolecules, 1997, 30(11): 3141-3146. |
[50] | ZHAO S, YANG Z, ZHOU X.Microstructure and mechanical properties of compact SiC/SiC composite fabricated with an infiltrative liquid precursor.J. Am. Ceram. Soc., 2015, 98(4): 1332-1337. |
[51] | ZHAO S, ZHOU X, YU J, et al.SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS.Fusion Eng. Des., 2014, 89(2): 131-136. |
[52] | KOTANI M, KATOH Y, KOHYAMA A, et al.Fabrication and oxidation resistance property of allylhydridopolycarbosilane derived SiC/SiC composites.J. Ceram. Soc. Jpn., 2003, 111: 300-307. |
[53] | INTERRANTE L V, JACOBS J M, SHERWOOD W, et al. Fabrication and properties of fiber- and particulate-reinforced SiC matrix composites obtained with (A)HPCS as the matrix source. Key Eng Mater, 1996, 127-131: 271-278. |
[54] | NANNETTI C A, ORTONA A, PINTO D A, et al.Manufacturing SiC-fiber-reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis.J. Am. Ceram. Soc., 2004, 87(7): 1205-1209. |
[55] | XU YONG-DONG, CHENG LAI-FEI, ZHANG LI-TONG.Three dimensional textile SiC/SiC composites by chemical vapor infiltration.Journal of Inorganic Materials, 2001, 12(2): 344-348. |
[56] | KATOH Y, SNEAD L L, HENAGER C H, et al.Current status and recent research achievements in SiC/SiC composites.J. Nucl. Mater., 2014, 455(1/2/3): 387-397. |
[57] | BERTRAND S, LAVAUD J F, HADI R E, et al.The thermal gradient-pulse flow CVI process: a new chemical vapor infiltration technique for the densification of fibre preforms. J. Eur. Ceram. Soc., 1998, 18(7): 857-870. |
[58] | IGAWA N, TAGUCHI T, SNEAD L L, et al. Optimizing the fabrication process for superior mechanical properties in the FCVI SiC matrix/stoichiometric SiC fiber composite system. J Nucl. Mater., 2002, 307-311(Part 2): 1205-1209. |
[59] | NASLAIN R R, PAILLER R, BOURRAT X, et al. Processing of Ceramic Matrix Composites by Pulsed-CVI and Related Techniques. Key Eng. Mater., 1999, 159-160: 359-366. |
[60] | ZHOU QING, DONG SHAO-MING, ZHANG XIANG-YU, et al.Carbon fiber surfae coating by forced pressure-pulsed CVI.Journal of Inorganic Materials, 2006, 21(6): 58-62. |
[61] | SAYANO A, SUTOH C, SUYAMA S, et al. Development of a reaction-sintered silicon carbide matrix composite. J. Nucl. Mater., 1999, 271-272: 467-471. |
[62] | WANG H, ZHOU X, YU J, et al.Fabrication of SiCf/SiC composites by chemical vapor infiltration and vapor silicon infiltration.Mater. Lett., 2010, 64(15): 1691-1693. |
[63] | EINSET E O.Analysis of reactive melt infiltration in the processing of ceramics and ceramic composites.Chem. Eng. Sci., 1998, 53(5): 1027-1039. |
[64] | KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and critical issues for development of SiC composites for fusion applications. J. Nucl. Mater., 2007, 367-370(Part A): 659-671. |
[65] | KOHYAMA A, PARK J S, JUNG H C.Advanced SiC fibers and SiC/SiC composites toward industrialization.J. Nucl. Mater., 2011, 417(1/2/3): 340-343. |
[66] | SHIMODA K, PARK J S, HINOKI T, et al. Microstructural optimization of high-temperature SiC/SiC composites by NITE process. J. Nucl. Mater., 2009, 386-388: 634-638. |
[67] | KOYANAGI T, KONDO S, HINOKI T.The influence of sintering additives on the irradiation resistance of NITE SiC.J. Nucl. Mater., 2011, 417(1/2/3): 435-439. |
[68] | KOHYAMA A, KATOH Y.Overview of CREST-ACE program for SiC/SiC ceramic composites and their energy system applications.Ceram. Trans., 2002, 144: 3-18. |
[69] | IEST Co Ltd. |
[70] | NOVAK S, RADE K, KONIG K, et al.Electrophoretic deposition in the production of SiC/SiC composites for fusion reactor applications.J. Eur. Ceram. Soc., 2008, 28(14): 2801-2807. |
[71] | NOVAK S, DRAZIC G, KONIG K, et al.Preparation of SiCf/SiC composites by the slip infiltration and transient eutectoid (SITE) process.J. Nucl. Mater., 2010, 399(2/3): 167-174. |
[72] | NOVAK S, IVEKOVIC A.Fabrication of SiCf/SiC composites by SITE-P process.J. Nucl. Mater., 2012, 427(1/2/3): 110-115. |
[73] | NASLAIN R.DESIGN. Preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview.Compos. Sci. Technol., 2004, 64(2): 155-170. |
[74] | CHEN S, HU H, ZHANG Y, et al.Rapid densification of C/SiC composites by joint processes of CLVD and PIP.Mater. Lett., 2011, 65(19/20): 3137-3139. |
[75] | YAN LIAN-SHENG, LI HE-JUN, CUI HONG, et al.Low-cost C/SiC composites prepared by CVI+pressure-PIP hybrid process.Journal of Inorganic Materials, 2006, 21(3): 664-670. |
[76] | WEN SHENG-QIONG, HE AI-JIE.Application of CMC on thermal parts of aeroengine.Aeronautical Manufacturing Technology, 2009(S1): 4-7. |
[77] | GAO TIE, HONG ZHI-LIANG, YANG JUAN.Application and prospect of ceramic matrix composite components for commercial aircraft engine.Aeronautical Manufacturing Technology, 2014(6): 14-21. |
[78] | MURTHY P, NEMETH N, BREWER D S, et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane.Compos. Part B-Eng., 2008(39): 694-703. |
[79] | VERRILLI M J, MARTIN L C, BREWER D N.RQL Sector Rig Testing of SiC/SiC Combustor Liners. NASA/TM-2002-211509, 2002. |
[80] | ELAM S, EFFMGER M, HOLMES R, et al.Lightweight Chambers for Thrust Cell Applications. 36th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Alabama, 2000: 1-10. |
[81] | OGASAWARA T.Recent research activities regarding SiC-based ceramic composites for aerospace applications.J. Plasma Fusion Res., 2004, 80(1): 36-41. |
[82] | |
[83] | GE |
[84] | SMITH C L.The need for fusion.Fusion Eng. Des., 2005, 74(1-4): 3-8. |
[85] | ZHAO S, ZHOU X, YU J, et al.Compatibility of PIP SiCf/SiC with LiPb at 700℃.Fusion Eng. Des., 2010, 85(7/8/9): 1624-1626. |
[86] | SNEAD L L, JONES R H, KOHYAMA A, et al. Status of silicon carbide for fusion. J. Nucl. Mater., 1996, 233-237(Part 1): 26-36. |
[87] | NOZAWA T, HINOKI T, HASEGAWA A, et al. Recent advances and issues in development of silicon carbide composites for fusion applications. J. Nucl. Mater., 2009, 386-388: 622-627. |
[88] | SNEAD L L, NOZAWA T, FERRARIS M, et al.Silicon carbide composites as fusion power reactor structural materials.J. Nucl. Mater., 2011, 417(1/2/3): 330-339. |
[89] | HENAGER C H, KURTZ R J. Compatibility of interfaces and fibers for SiC-composites in fusion environments. J. Nucl. Mater., 2009, 386-388: 670-674. |
[90] | IHLI T, BASU T K, GIANCARLI L M, et al.Review of blanket designs for advanced fusion reactors.Fusion Eng. Des., 2008, 83(7/8/9): 912-919. |
[91] | NORAJITRA P, BUHLER L, FISCHER U, et al. The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators. Fusion Eng. Des., 2001, 58-59: 629-634. |
[92] | RAFFRAY A R, EL-GUEBALY L, GORDEEV S, et al. High performance blanket for ARIES-AT power plant. Fusion Eng. Des., 2001, 58-59: 549-553. |
[93] | NORAJITRAA P, ABDEL-KHALIK S I, GIANCARLI L M, et al. Divertor conceptual designs for a fusion power plant.Fusion Eng. Des., 2008, 83(7/8/9): 893-902. |
[94] | GOLFIER H, AIELLO G, FUTTERER A M, et al. Performance of the TAURO blanket system associated with a liquid-metal cooled divertor. Fusion Eng. Des., 2000, 49-50: 559-565. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||