Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (8): 793-801.DOI: 10.15541/jim20140646
• Orginal Article • Previous Articles Next Articles
ZHENG Yan-Bin1, 2, JIANG Zhi-Gang1, ZHU Pin-Wen1
Received:
2014-12-16
Revised:
2015-03-24
Published:
2015-08-20
Online:
2015-07-21
About author:
ZHENG Yan-Bin. E-mail: zhengyb14@mails.jlu.edu.cn
CLC Number:
ZHENG Yan-Bin, JIANG Zhi-Gang, ZHU Pin-Wen. Development on the Preparation and Application of Onion-like Carbon[J]. Journal of Inorganic Materials, 2015, 30(8): 793-801.
Preparation methods | Advantages | Disadvantages |
---|---|---|
Arc discharge | High crystallization,low defect density carbon onions prepared in bulk quantities using an arc in water | Containing a large amount of carbonaceous impurities such as amorphous carbon, CNTs, CNT-like structures, graphitic debris, and metallic impurities |
Plasma | Low cost and prepared in bulk quantities | Containing amorphous carbon and metallic impurities |
Electron-beam radiation | In-situ observations achieved helpful to study the growth mechanism of OLC | High cost and low yield |
Chemical vapor deposition | Simple, cheap, easy to implement and to realize mass production | Purification to remove amorphous carbon, CNTs, graphite, catalyst support, etc |
Nanodiamond annealing in vacuum | Narrow-sized distribution and produced in massive amount | Requiring nanodiamond precursor and high-temperature vacuum oven |
Thermolysis | Massive amount of carbon onions produced at low cost by using simple device | Larger size CNOs and/or purification requirement |
Table 1 Advantages and disadvantages of OLC's main preparation methods
Preparation methods | Advantages | Disadvantages |
---|---|---|
Arc discharge | High crystallization,low defect density carbon onions prepared in bulk quantities using an arc in water | Containing a large amount of carbonaceous impurities such as amorphous carbon, CNTs, CNT-like structures, graphitic debris, and metallic impurities |
Plasma | Low cost and prepared in bulk quantities | Containing amorphous carbon and metallic impurities |
Electron-beam radiation | In-situ observations achieved helpful to study the growth mechanism of OLC | High cost and low yield |
Chemical vapor deposition | Simple, cheap, easy to implement and to realize mass production | Purification to remove amorphous carbon, CNTs, graphite, catalyst support, etc |
Nanodiamond annealing in vacuum | Narrow-sized distribution and produced in massive amount | Requiring nanodiamond precursor and high-temperature vacuum oven |
Thermolysis | Massive amount of carbon onions produced at low cost by using simple device | Larger size CNOs and/or purification requirement |
Metal oxides | Theoretical capacity/(mAh·g-1) | Ref |
---|---|---|
SnO2 | 782 | [54] |
CuO | 674 | [4] |
CdO | 1046 | [55] |
Cr2O3 | 1058 | [56] |
MoO2 | 838 | [57] |
NiO | 718 | [3] |
MnO | 755 | [58] |
MnO2 | 1233 | [59] |
Mn2O3 | 1019 | [60] |
Fe2O3 | 1007 | [60] |
Fe3O4 | 926 | [61] |
CoO | 715 | [62] |
Co3O4 | 890 | [5] |
Table 2 Theoretical capacities of various metal oxides
Metal oxides | Theoretical capacity/(mAh·g-1) | Ref |
---|---|---|
SnO2 | 782 | [54] |
CuO | 674 | [4] |
CdO | 1046 | [55] |
Cr2O3 | 1058 | [56] |
MoO2 | 838 | [57] |
NiO | 718 | [3] |
MnO | 755 | [58] |
MnO2 | 1233 | [59] |
Mn2O3 | 1019 | [60] |
Fe2O3 | 1007 | [60] |
Fe3O4 | 926 | [61] |
CoO | 715 | [62] |
Co3O4 | 890 | [5] |
Anode materials | OLC encapsulation | Initial discharge ability of nanoparticles electrode at different rates | Cycle performance | Ref |
---|---|---|---|---|
NiO | No | NiO, 2C, 558.8 mAh/g | 0.5C, 1150 mAh/g (initial discharge) and 383.5 mAh/g (after 50 cycles) | [3] |
Yes | NiO/C, 2C, 1105.6 mAh/g | 0.5C, 1689.4 mAh/g (initial discharge) and 1157.7 mAh/g (after 50 cycles) | ||
CuO | No | CuO, 1.2C, 178.9 mAh/g | 100 mA/g , 270.2 mAh/g (after 50 cycles) | [4] |
Yes | CuO/C, 1.2C, 535.6 mAh/g | 100 mA/g, 628.7 mAh/g (after 50 cycles) with a high Coulombic efficiency of 98.6% | ||
Co3O4 | No | Co3O4, 2C, 459 mAh/g | 1248.8 mAh/g (initial discharge) and 471.5 mAh/g (after 50 cycles) | [5] |
Yes | Co3O4/C, 2C, 925 mAh/g | 0.5C, 1467.6 mAh/g (initial discharge) and 1026.9 mAh/g (after 50 cycles) | ||
SnO2 | No | / | 0.2 mA/cm2, 849 mAh/g (initial discharge) to 123 mAh/g (after 50 cycles) | [63] |
Yes | / | 0.2 mA/cm2, 755 mAh/g(initial discharge) and 446 mAh/g (after 50 cycles) |
Table 3 Performance comparison of metal oxides used as anode materials
Anode materials | OLC encapsulation | Initial discharge ability of nanoparticles electrode at different rates | Cycle performance | Ref |
---|---|---|---|---|
NiO | No | NiO, 2C, 558.8 mAh/g | 0.5C, 1150 mAh/g (initial discharge) and 383.5 mAh/g (after 50 cycles) | [3] |
Yes | NiO/C, 2C, 1105.6 mAh/g | 0.5C, 1689.4 mAh/g (initial discharge) and 1157.7 mAh/g (after 50 cycles) | ||
CuO | No | CuO, 1.2C, 178.9 mAh/g | 100 mA/g , 270.2 mAh/g (after 50 cycles) | [4] |
Yes | CuO/C, 1.2C, 535.6 mAh/g | 100 mA/g, 628.7 mAh/g (after 50 cycles) with a high Coulombic efficiency of 98.6% | ||
Co3O4 | No | Co3O4, 2C, 459 mAh/g | 1248.8 mAh/g (initial discharge) and 471.5 mAh/g (after 50 cycles) | [5] |
Yes | Co3O4/C, 2C, 925 mAh/g | 0.5C, 1467.6 mAh/g (initial discharge) and 1026.9 mAh/g (after 50 cycles) | ||
SnO2 | No | / | 0.2 mA/cm2, 849 mAh/g (initial discharge) to 123 mAh/g (after 50 cycles) | [63] |
Yes | / | 0.2 mA/cm2, 755 mAh/g(initial discharge) and 446 mAh/g (after 50 cycles) |
Types of materials | Specific capacitances/(F·g-1) | Ref |
---|---|---|
CNOs | 30 | [67] |
CNOs/KOH activation | <122 | [66] |
CNOs/H2SO4 activation | 20-40 | [68] |
CNOs/RuO2·xH2O | 96-334 | [69] |
CNOs/NiO | 218.2-290.6 | [70] |
CNOs/Ni(OH)2 | 727.4-1225.2 | [70] |
CNOs/MnO2 | 177.5 | [71] |
CNOs/PDDA | 20-30 | [72] |
CNOs/chit | 20-30 | [72] |
CNOs/PANI | <525 | [73] |
CNOs/PQ | 267 | [67] |
CNOs/NQ | 91 | [67] |
CNOs/PY | 130 | [67] |
Table 3 Specific capacitances of various CNOs and CNOs-based composite electrode
Types of materials | Specific capacitances/(F·g-1) | Ref |
---|---|---|
CNOs | 30 | [67] |
CNOs/KOH activation | <122 | [66] |
CNOs/H2SO4 activation | 20-40 | [68] |
CNOs/RuO2·xH2O | 96-334 | [69] |
CNOs/NiO | 218.2-290.6 | [70] |
CNOs/Ni(OH)2 | 727.4-1225.2 | [70] |
CNOs/MnO2 | 177.5 | [71] |
CNOs/PDDA | 20-30 | [72] |
CNOs/chit | 20-30 | [72] |
CNOs/PANI | <525 | [73] |
CNOs/PQ | 267 | [67] |
CNOs/NQ | 91 | [67] |
CNOs/PY | 130 | [67] |
[1] | UGARTE D.Curling and closure of graphitic networks under electron-beam irradiation.Nature, 1992, 359: 707-709. |
[2] | ABDULLAEVA Z, OMURZAK E, IWAMOTO C, et al.Onion- like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in a liquid.Carbon, 2012, 50: 1776-1785. |
[3] | LIU X G, OR S W, JIN C G, et al.NiO/C nanocapsules with onion- like carbon shell as anode material for lithium ion batteries.Carbon, 2013, 60: 215-220. |
[4] | LIU X G, BI N N, FENG C, et al.Onion-like carbon coated CuO nanocapsules: a highly reversible anode material for lithium ion batteries. Journal of Alloys and Compounds, 2014, 587: 1-5. |
[5] | LIU X G, OR S W, JIN C G, et al.Co3O4/C nanocapsules with onion- like carbon shells as anode material for lithium ion batteries.Electrochimica Acta, 2013, 100: 140-146. |
[6] | QIAO Z J, LI J J, ZHAO N Q, et al.Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scripta Materialia, 2006, 54: 225-229. |
[7] | XU B S.Prospects and research progress in nano onion-like fullerenes.New carbon materials, 2008, 23(4): 289-301. |
[8] | LIN Y M, PAN X L, QI W, et al.Nitrogen-doped onion-like carbon: a novel and efficient metal-free catalyst for epoxidation reaction. J. Mater. Chem. A, 2014, 2: 12475-12483. |
[9] | BOGDANOV K, FEDOROV A, OSIPOV V, et al.Annealing- induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies.Carbon, 2014, 73: 78-86. |
[10] | XU B S, TANAKA S I.Multiple-nuclei Onion Like Fullerenes Cultivated by Electron Beam Irradiation. Proc. Int. Conf. ICSE,Cambridge, 1997: 355-360. |
[11] | WANG Q, SUN X L, HE D Y, et al.Preparation and study of carbon nano-onion for lithium storage. Materials Chemistry and Physics, 2013, 139: 333-337. |
[12] | WANG Y, HAN Z J, YU S F, et al.Core-leaf onion-like carbon/ MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries.Carbon, 2013, 64: 230-236. |
[13] | WU G, NELSON M, MA S G, et al.Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction.Carbon, 2011, 49: 3972-3982. |
[14] | MATSUMOTO N, JOLY-POTTUZ L, KINOSHITA H, et al.Application of onion-like carbon to micro and nanotribology.Diamond & Related Materials, 2007, 16: 1227-1230. |
[15] | JOLY-POTTUZ L, MATSUMOTO N, KINOSHITA H, et al.Diamond-derived carbon onions as lubricant additives.Tribology International, 2008, 41: 69-78. |
[16] | MATSUMOTO N, MISTRY K K, KIM J H, et al.Friction reducing properties of onion-like carbon based lubricant under high contact pressure.Tribology, 2012, 6(3): 116-120. |
[17] | WANG Y, XING G Z, HAN Z J, et al.Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries.Nanoscale, 2014, 6: 8884-8890. |
[18] | WANG Y, YAN F, LIU S W, et al.Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability.J. Mater. Chem. A, 2013, 1(17): 5212-5216. |
[19] | BU I Y Y. Synthesis of graphitic carbon nano-onions for dye sensitized solar cells.Solar Energy, 2014, 105: 236-242. |
[20] | ZHANG C G, LI J J, LIU E Z, et al.Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage.Carbon, 2012, 50: 3513-3521. |
[21] | ZHANG C G, LI J J, SHI C S, et al.Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties.Journal of Energy Chemistry, 2014, 23: 324-330. |
[22] | MCDONOUGH J K, FROLOV A I, PRESSER V, et al.Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes.Carbon, 2012, 50: 3298-3309. |
[23] | PECH D, BRUNET M, DUROU H, et al.Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon.Nature Nanotechnology, 2010, 5: 651-654. |
[24] | BUSHUEVA E G, GALKIN P S, BULUSHEVA L G, et al.Double layer supercapacitor properties of onion-like carbon materials.Phys. Stat. Sol.(b), 2008, 245(10): 2296-2299. |
[25] | SHENDEROVA O, GRISHKO V, CUNNINGHAM G, et al.Onion- like carbon for terahertz electromagnetic shielding.Diamond & Related Materials, 2008, 17: 462-466. |
[26] | SANO N, WANG H, ALEXANDROU I, et al.Properties of carbon onions produced by an arc discharge in water.Journal of Applied Physics, 2002, 92(5): 2783-2788. |
[27] | BORGOHAIN R, YANG J, SELEGUE J P, et al.Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions.Carbon, 2014, 66: 272-284. |
[28] | XING G, JIA X L, SHI Z Q.The production of carbon nano-materials by arc discharge under water or liquid nitrogen .New Carbon Materials, 2007, 22(4): 337-341. |
[29] | SANO N, WANG H, CHHOWALLA M, et al.Nanotechnology: synthesis of carbon 'onions' in water.Nature, 2001, 414: 506-507. |
[30] | ZHOU J F, SHEN Z Y, HOU S M, et al.Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy.Applied Surface Science, 2007, 253: 3237-3241. |
[31] | LIU W, MIAO Y, MENG Q S.Synthesis of Onion-Like Fullerenes by Arc Discharge in Non-Toxic Organic Liquid. Integrated Ferroelectrics, 2012, 138: 77-82. |
[32] | CHEN X H, DENG F M, WANG J X, et al.New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition.Chemical Physics Letters, 2001, 336: 201-204. |
[33] | SZERENCSI M, RADNOCZI G.The mechanism of growth and decay of carbon nano-onions formed by ordering of amorphous particles.Vacuum, 2010, 84: 197-201. |
[34] | HE C N, TIAN F, LIU S J, et al.Characterization and magnetic property of carbon coated metal nanoparticles and hollow carbon onions fabricated by CVD of methane. Materials Letters, 2008, 62: 3697-3699. |
[35] | HE C N, ZHAO N Q, DU X W, et al.Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum.Scripta Materialia, 2006, 54: 689-693. |
[36] | WANG X M, XU B S, LIU X G, et al.Synthesis of Fe-included onion-like fullerenes by chemical vapor deposition.Diamond & Related Materials, 2006, 15: 147-150. |
[37] | ZHANG C G, LI J J, SHI C S, et al.The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni-Fe alloy catalyst.Carbon, 2011, 49: 1151-1158. |
[38] | MYKHAYLYK O O, SOLONIN Y M, BATCHELDER D N, et al. Transformation of nanodiamond into carbon onions: a comparative study by high-resolution transmission electron microscopy, electron energy-lossspectroscopy, X-ray diffraction, small-angle X-ray scattering,ultraviolet Raman spectroscopy. Journal of applied Physics, 2005, 97: 074302-1-6. |
[39] | BUTENKO Y V, KRISHNAMURTHY S, CHAKRABORTY A K, et al. Photoemission study of onionlike carbons produced by annealing nanodiamonds. Physical Review B, 2005, 71: 075420-1-10. |
[40] | CEBIK J, MCDONOUGH J K, PEERALLY F, et al. Raman spectroscopy study of the nanodiamond-to-carbon onion transformation. Nanotechnology, 2013, 24: 205703-1-10. |
[41] | BYSTRZEJEWSKI M, RUMMELI M H, GEMMING T, et al.Catalyst-free synthesis of onion-like carbon nanoparticles.New Carbon Materials, 2010, 25(1): 1-8. |
[42] | GORELIK T, URBAN S, FALK F, et al.Carbon onions produced by laser irradiation of amorphous silicon carbide.Chemical Physics Letters, 2003, 373: 642-645. |
[43] | HU S L, BAI P K, TIAN F, et al.Hydrophilic carbon onions synthesized by millisecond pulsed laser irradiation.Carbon, 2009, 47: 876-883. |
[44] | DOROBANTU D, BOTA P M, BOERASU I, et al.Pulse laser ablation system for carbon nano-onions fabrication.Surface Engineering and Applied Electrochemistry, 2014, 50(5): 390-394. |
[45] | ZHANG H M, LIANG C H, LIU J, et al.The formation of onion-like carbon-encapsulated cobalt carbide core/shell nanoparticles by the laser ablation of metallic cobalt in acetone.Carbon, 2013, 55: 108-115. |
[46] | GAO Y, ZHOU Y S, PARK J B, et al. Resonant excitation of precursor molecules in improving the particle crystallinity, growth> rate and optical limiting performance of carbon nano- onions. Nanotechnology, 2011, 22(16): 165604-1-6. |
[47] | XIAO J, OUYANG G, LIU P, et al.Reversible nanodiamond- carbon onion phase transformations.Nano letters, 2014, 14: 3645-3652. |
[48] | CABIOC’H T, JAOUEN M, THUNE E, et al. Carbon onions formation by high-dose carbon ion implantation into copper and silver. Surface and Coatings Technology, 2000, 128-129: 43-50. |
[49] | HUANG J Y, YASUDA H AND MORI H. Highly curved carbon nanostructures produced by ball-milling.Chemical Physics Letters, 1999, 303: 130-134. |
[50] | HAN F D, YAO B AND BAI Y J. Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries. J. Phys. Chem. C, 2011, 115: 8923-8927. |
[51] | GHOSH M, SONKAR S K, SAXENA M, et al.Carbon nano-onions for imaging the life cycle of drosophila melanogaster.Small, 2011, 7(22): 3170-3177. |
[52] | CHOUCAIR M, STRIDE J A.The gram-scale synthesis of carbon onions.Carbon, 2012, 50: 1109-1115. |
[53] | HE C N, WU S, ZHAO N Q, et al.Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material.ACS Nano, 2013, 7(5): 4459-4469. |
[54] | HAN Q Y, ZAI J T, XIAO Y L, et al.Direct growth of SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries.RSC Adv., 2013, 3: 20573-20578. |
[55] | FENG J K, XIONG S L, QIAN Y T, et al.Synthesis of nanosized cadmium oxide (CdO) as a novel high capacity anode material for Lithium-ion batteries: influence of carbon nanotubes decoration and binder choice.Electrochimica Acta, 2014, 129: 107-112. |
[56] | GUO B K, CHI M F, SUN X G, et al.Mesoporous carbon-Cr2O3 composite as an anode material for lithium ion batteries.Journal of Power Sources, 2012, 205: 495-499. |
[57] | CHEN A, LI C X, TANG R, et al.MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.Phys. Chem. Chem. Phys., 2013, 15: 13601-13610. |
[58] | LIU B, HU X L, XU H H, et al.Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries.Scientific Reports, 2014, 4: 4229. |
[59] | ZANG J, CHEN J J, ZHANG C L, et al.The synthesis of a core-shell MnO2/3D-ordered hollow carbon sphere composite and its superior electrochemical capability for lithium ion batteries. J. Mater. Chem. A, 2014, 2(18): 6343-6347. |
[60] | LEPPLE M, ADAM R, CUPID D M, et al.Thermodynamic investigations of copper oxides used as conversion type electrodes in lithium ion batteries.J. Mater. Sci., 2013, 48: 5818-5826. |
[61] | WANG J, ZHAO H L, ZENG Z P, et al.Nano-sized Fe3O4 /carbon as anode material for lithium ion battery.Materials Chemistry and Physics, 2014, 148: 699-704. |
[62] | QIN D, YAN P, LI G Z, et al. Synthesis of hierarchical CoO nano/microstructures as anode materials for lithium-ion batteries. Journal of Nanomaterials, 2014, 2014: 489862-1-5. |
[63] | ZHANG H J, SONG H H, ZHOU J S, et al.Preparation and electrochemical properties of SnO2/onion-like hollow carbon nanoparticle composites as anode materials for lithium-ion batteries.Acta Phys.-Chim. Sin., 2010, 26(5): 1259-1263. |
[64] | STROBEL R, GARCHE J, MOSELEY P T, et al.Hydrogen storage by carbon materials.Journal of Power Sources, 2006, 159: 781-801. |
[65] | PORTET C, YUSHIN G, GOGOTSI Y.Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors.Carbon, 2007, 45: 2511-2518. |
[66] | GAO Y, ZHOU Y S, QIAN M, et al.Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes.Carbon, 2013, 51: 52-58. |
[67] | ANJOS D M, MCDONOUGH J K, PERRE E, et al.Pseudocapacitance and performance stability of quinone-coated carbon onions.Nano energy, 2013, 2: 702-712. |
[68] | PLONSKA-BRZEZINSKA M E, ECHEGOYEN L. Carbon nano-onions for supercapacitor electrodes: recent developments and applications.Journal of Materials Chemistry A, 2013, 1: 13703-13714. |
[69] | BORGOHAIN R, LI J C, SELEGUE J P, et al.Electrochemical study of functionalized carbon nano-onions for high-performance supercapacitor electrodes.J. Phys. Chem. C, 2012, 116: 15068-15075. |
[70] | PLONSKA-BRZEZINSKA M E, BRUS D M, MOLINA- ONTORIA A, et al. Synthesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes. RSC Adv., 2013, 3: 25891-25901. |
[71] | WANG Y, YU S F, SUN C Y, et al.MnO2/onion-like carbon nanocomposites for pseudocapacitors. J. Mater. Chem., 2012, 22: 17584-17588. |
[72] | BRECZKO J, WINKLER K, PLONSKA-BRZEZINSKA M E, et al. Electrochemical properties of composites containing small carbon nano-onions and solid polyelectrolytes.J. Mater. Chem., 2010, 20: 7761-7768. |
[73] | PLONSKA-BRZEZINSKA D M E, BRECZKO J, PALYS D B, et al. The electrochemical properties of nanocomposite films obtained by chemical in situ polymerization of aniline and carbon nanostructures.ChemPhysChem, 2013, 14(1): 116-124. |
[74] | HIRATA A, IGARASHI M, KAITO T.Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles.Tribology International, 2004, 37: 899-905. |
[75] | BUCHOLZ E W, PHILLPOT S R, SINNOTT S B.Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions. Computational Materials Science, 2012, 54: 91-96. |
[76] | HAN C, BO X J, ZHANG Y F, et al.One-pot synthesis of nitrogen and sulfur co-doped onion-like mesoporous carbon vesicle as an efficient metal-free catalyst for oxygen reduction reaction in alkaline solution.Journal of Power Sources, 2014, 272: 267-276. |
[77] | HUANG Q, YU D L, XU B, et al.Nanotwinned diamond with unprecedented hardness and stability.Nature, 2014, 510: 250-253. |
[78] | 龚文. 碳纳米葱无添加剂高温高压烧结聚晶金刚石的研究. 秦皇岛: 燕山大学硕士学位论文, 2012. |
[79] | 余强华. 微米金刚石对碳纳米葱烧结PCD组织及性能的影响. 秦皇岛: 燕山大学硕士学位论文, 2013. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[3] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[4] | WANG Lukai, FENG Junzong, JIANG Yonggang, LI Liangjun, FENG Jian. Direct-ink-writing 3D Printing of Ceramic-based Porous Structures: a Review [J]. Journal of Inorganic Materials, 2023, 38(10): 1133-1148. |
[5] | LIU Kai, SUN Ce, SHI Yusheng, HU Jiaming, ZHANG Qingqing, SUN Yunfei, ZHANG Song, TU Rong, YAN Chunze, CHEN Zhangwei, HUANG Shangyu, SUN Huajun. Current Status and Prospect of Additive Manufacturing Piezoceramics [J]. Journal of Inorganic Materials, 2022, 37(3): 278-288. |
[6] | LEI Weiyan, WANG Yue, WU Shiran, SHI Dongxin, SHEN Yi, LI Fengfeng. 2D Nanomaterials from Group VA Single-element: Research Progress in Biomedical Fields [J]. Journal of Inorganic Materials, 2022, 37(11): 1181-1191. |
[7] | HUANG Hui, CHEN Yu. Materdicine and Medmaterial [J]. Journal of Inorganic Materials, 2022, 37(11): 1151-1169. |
[8] | SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation [J]. Journal of Inorganic Materials, 2021, 36(6): 561-569. |
[9] | FAN Hongwei, LI Kerui, HOU Chengyi, ZHANG Qinghong, LI Yaogang, WANG Hongzhi. Multi-functional Electrochromic Devices: Integration Strategies Based on Multiple and Single Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 115-127. |
[10] | LIU Ziyang, GENG Zhen, LI Zhaoyang. Preparing Biomedical CaCO3/HA Composite with Oyster Shell [J]. Journal of Inorganic Materials, 2020, 35(5): 601-607. |
[11] | WANG Pengren, GOU Yanzi, WANG Hao. Third Generation SiC Fibers for Nuclear Applications [J]. Journal of Inorganic Materials, 2020, 35(5): 525-531. |
[12] | JIA Hanxiang, CAO Xun, JIN Pingshi. Advances in Inorganic All-solid-state Electrochromic Materials and Devices [J]. Journal of Inorganic Materials, 2020, 35(5): 511-524. |
[13] | HUANG Ye-Yan, XU Kai, WU Bo, LI Peng, CHANG Ke-Ke, HUANG Feng, HUANG Qing. Review on Metastable Phase Diagrams: Application Roles in Specialty Ceramic Coatings [J]. Journal of Inorganic Materials, 2020, 35(1): 19-28. |
[14] | DONG Yu-Hui, ZENG Shu-Yu, HAN Bo-Ning, XUE Jie, SONG Ji-Zhong, ZENG Hai-Bo. BN/CsPbX3 Composite Nanocrystals: Synthesis and Applications in White LED [J]. Journal of Inorganic Materials, 2019, 34(1): 72-78. |
[15] | WANG Hai-Long, WANG Yang, WANG Xiang-Wei, ZHANG Hong-Zhi. Research Progress of Thermal Controlled Cracking of Hard-Brittle Plate [J]. Journal of Inorganic Materials, 2018, 33(9): 923-930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||