Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (5): 489-502.DOI: 10.15541/jim20220716
• REVIEW • Previous Articles Next Articles
NIU Jiaxue1(), SUN Si2, LIU Pengfei1, ZHANG Xiaodong1,2, MU Xiaoyu1()
Received:
2022-11-26
Revised:
2023-01-04
Published:
2023-01-17
Online:
2023-01-17
Contact:
MU Xiaoyu, associate professor. E-mail: muxiaoyu@tju.edu.cnAbout author:
NIU Jiaxue (1999-), female, Master candidate. E-mail: jiaxueniu@tju.edu.cn
Supported by:
CLC Number:
NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine[J]. Journal of Inorganic Materials, 2023, 38(5): 489-502.
Fig. 1 Different types of Cu-based nanozymes[34,56,67⇓⇓-70] (a) TEM image of Cu-Cys NPs[56]; (b) Schematic illustration of CuxO[68]; (c) TEM image of Cu2-xTe[67]; (d~f) Schematic illustration of (d) Cu-TCPP Dots[34], (e) Cu-HCF SSNEs[69] and (f) Cu-N4[70] NPs: Nano particles; Cu-TCPP: Cu-tetrakis(4-carboxyphenyl)porphyrin; Cu-HCF: Cu hexacyanoferrate; SSNEs: Single-site nanozymes
Fig. 2 Antioxidant-like enzyme and ROS scavenging activitivies of Cu-based nanozymes[68,70,86] (a-c) SOD-like (a), GPx-like (b), and POD-like (c) activities of CuxO[68]; (d-f) H2O2 (d), O2·- (e) and free radical (f) scavenging activity of Cu5.4O USNPs[86]; (g) UV-Vis spectra of the reaction solution in the presence of Cu SAs/CN, ascorbic acid and H2O2 over time; (h) Michaelis-Menton curves obtained with different concentrations of substrate AA under the fixed concentration of Cu SAs/CN and H2O2; (i) Quantification for APX-like activities of Cu SAs/CN[70] ROS: Reactive oxigen species; SOD: Superoxide dismutase; SA: Specific activities; AA: Ascorbic acid
Fig. 3 Oxidase-like and ROS generating activity of Cu-based nanozymes[69,81] (a) 1H NMR spectra of GSH at different points during reaction with SSNEs; (b, c) Kinetics of GSHOx-like (b) and POD-like (c) activities of SSNEs and SSNES-G; (d) ·OH generating activity of SSNEs and SSNES-G[69]; (e) 1O2 generating activity of Cu SAzyme with DPBF serving as the indicator; (f) 1O2, O2·- and ·OH generating activity of Cu SAzyme with TEMP, BMPO and DMPO as trapping agents in the presence of H2O2[81] GSH: Glutathione; SSNEs: Single-site nanozyme; GSHOx: Glutathione oxidase; POD: Peroxidase; DPBF: 1,3-diphenyl isobenzofuran; mM: mmol/L; μM: μmol/L
Fig. 4 Cu-based nanozymes for biosensing[94⇓⇓-97] (a) Schematic diagram of a paper sensor for H2O2 detection based on mesoporous CuO hollow sphere nanozymes; (b) Effects of different substrates H2O2, ascorbic acid, Cys, Gly, Pro, Ala, Glu, GSH, Glc, Na+, K+, Ca2+, Mg2+, and Mn2+ on the sensing performance of the paper sensor [94]; (c) UV-Vis spectra of the mixed reaction system with CuO/NiO NTs, TMB, H2O2 and different concentrations of isoniazid; (d) Dose response curve of sensing isoniazid[95]; (e) Schematic illustration of the three-enzyme system (ACC) containing acetylcholinesterase (AchE), choline oxidase (ChOx), and Cu-N-C single atom enzymes (SAzymes) for the organophosphorous pesticide (OP) detection; (f) Change of the absorbance at 652 nm of the ACC system with the addition of OP from 1 to 300 ng/mL; (g) Linear relationship between the inhibition rate (IR) of AchE and the logarithm of OP concentration[96]; (h) Schematic illustration of CuO NPs for ascorbic acid and ALP detection; (i) Emission spectra of different detection systems, with 1-4 indicating AAP-TA-CuO NPs, ALP-TA-CuO NPs, AAP-ALP-TA-CuO NPs, and TA-AA-CuO NPs, respectively; (j) Linear relationship between emission intensity and concentration of ascorbic acid; (k) Calibration plot for ALP determination with different concentrations[97] TMB: 3,3′,5,5′-tetramethylbenzidine; GSH: Glutathione; AChE: Acetylcholinesterase; OP: Organophosphorus pesticide; AAP: L-ascorbate-2-trisodium phosphate; TA: Terephthalic acid; ALP: Alkaline phosphatase; µM: µmol/L; mM: mmol/L
Fig. 5 Cu-based nanozymes for wound healing[86,98] (a) Schematic illustration of the Ni4Cu2 /F127 composite hydrogel dressing in wound healing; (b) Photographs of wounds with different treatments on days 0, 1, 3, 5, and 7 with scale bar representing 5 mm; (c-f) Statistical analysis of the cross-sectional length of wound (c), epidermal thickness (d), granulation tissue thickness (e), number of blood vessels (f) around wound on day 7[98]; (g) Schematic illustration of Cu5.4O USNPs with multiple enzyme-like activities and broad-spectrum ROS scavenging abilities; (h) Photographs of diabetic wounds at different time points with a 6-mm-diameter standard green disc as the size reference; (i) Schematic illustration of Cu5.4O USNPs in diabetic wounds healing; (j) Percentage of wound closure area at different time points; (k) Representative histological images and (l) quantification for the length of regenerated epidermis on day 15 post-surgery; (m) Representative histological images and (n) quantification for the granulation tissue on day 15 post-surgery[86] ROS: Reactive oxigen species; GSH: Glutathione; GSSG: Oxidized glutathione
Fig. 6 Cu-based nanozymes for AKIg[34,86] (a) Schematic illustration of the establishment of AKI and Cu5.4O USNPs for the treatment[86]; (b) Survival curves and the levels of (c) CRE and (d) BUN in different groups at 24 h after treatments[86]; (e, f) The levels of (e) kidney injury molecules-1 (KIM-1) and (f) heme oxygenase-1 (HO-1) in kidney of different groups[86]; (g) Schematic illustration of CTMDs in AKI induced by endotoxemia[34]; (h) Survival curves, (i) levels of oxidative stress containing lactate dehydrogenase (LDH), TNF-α, IL-6, and (j) levels of CREA and BUN[34]; (k) H&E images of different groups[34] PBS: Phosphate buffer solution; AKI: Acute kidney injury; CRE: Creatinine; BUN: Blood urea nitrogen; LPS: Lipopolysaccharide; CTMDs: Cu-tetrakis(4-carboxyphenyl)porphyrin) MOF dots
Fig. 7 Cu-based nanozymes for tumor therapy[56,106] (a) Schematic illustration of Cu-Cys NPs preparation and chemodynamic therapy for tumors; (b, c) Changes in body weight (b) and tumor size (c) of MCF-7R tumor-bearing mice with different treatments; (d) Photographs of tumor in different groups after 40 d of treatment; (e) Average tumor masses excised from MCF-7R tumor-bearing mice from each group[56]; (f) Schematic illustration of the synergistic anticancer mechanism of nHACI based on PDT and PD-1 blockers; (g) Average tumor volume, (h) photographs and (i) weights of tumor in different groups; (j) Survival curves of B16F10 tumor-bearing mice in different groups[106] GSH: Glutathione; GSSG: Oxidized glutathione; ROS: Reactive oxigen species; DOX: Doxorubicin; HHA: Hydrazided hyaluronan
[1] |
GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol., 2007, 2(9): 577.
DOI PMID |
[2] |
DONG H, DU W, DONG J, et al. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun., 2022, 13(1): 5365.
DOI |
[3] | XU B, LI S, ZHENG L, et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater., 2022, 34(15): 2107088. |
[4] |
LIU J, WANG A, LIU S, et al. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem. Int. Ed., 2021, 60(48): 25328.
DOI URL |
[5] |
WANG X, ZHONG X, BAI L, et al. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc., 2020, 142(14): 6527.
DOI URL |
[6] |
VERNEKAR A, SINHA D, SRIVASTAVA S, et al. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun., 2014, 5(1): 5301.
DOI PMID |
[7] |
GHOSH S, ROY P, KARMODAK N, et al. Nanoisozymes: crystal- facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew. Chem. Int. Ed., 2018, 130(17): 4600.
DOI URL |
[8] |
HUANG Y, LIU Z, LIU C, et al. Self-assembly of multi- nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed., 2016, 128(23): 6758.
DOI URL |
[9] |
SINGH N, SAVANUR M, SRIVASTAVA S, et al. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson's disease model. Angew. Chem. Int. Ed., 2017, 129(45): 14455.
DOI URL |
[10] |
YAO J, CHENG Y, ZHOU M, et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci., 2018, 9(11): 2927.
DOI URL |
[11] |
YAN R, SUN S, YANG J, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano, 2019, 13(10): 11552.
DOI PMID |
[12] |
ZHANG S, LIU Y, SUN S, et al. Catalytic patch with redox Cr/CeO2 nanozyme of noninvasive intervention for brain trauma. Theranostics, 2021, 11(6): 2806.
DOI URL |
[13] |
MU J, ZHANG L, ZHAO M, et al. Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl. Mater. Interf., 2014, 6(10): 7090.
DOI URL |
[14] |
DONG J, SONG L, YIN J, et al. Co3O4 nanoparticles with multi- enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interf., 2014, 6(3): 1959.
DOI URL |
[15] |
CHEN W, CHEN J, FENG Y, et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst, 2012, 137(7): 1706.
DOI PMID |
[16] |
HONG L, LIU A, LI G, et al. Chemiluminescent cholesterol sensor based on peroxidase-like activity of cupric oxide nanoparticles. Biosens. Bioelectron., 2013, 43: 1.
DOI PMID |
[17] |
LIN Y, REN J, QU X. Nano-gold as artificial enzymes: hidden talents. Adv. Mater., 2014, 26(25): 4200.
DOI URL |
[18] |
TAO Y, JU E, REN J, et al. Bifunctionalized mesoporous silica- supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater., 2015, 27(6): 1097.
DOI URL |
[19] |
ZHANG Y, SUN S, LIU H, et al. Catalytically active gold clusters with atomic precision for noninvasive early intervention of neurotrauma. J. Nanobiotechnology, 2021, 19(1): 319.
DOI |
[20] |
JIAO M, MU X, SUN S, et al. Establishing bilateral modulation of radiation induced redox damage via biocatalytic single atom engineering at Au clusters. Chem. Eng. J., 2022, 445: 136793.
DOI URL |
[21] |
HAN L, LI C, ZHANG T, et al. Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-Like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl. Mater. Interf., 2015, 7(26): 14463.
DOI URL |
[22] |
WANG D, ZHANG B, DING H, et al. TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today, 2021, 40: 101243.
DOI URL |
[23] |
SUN S, LIU H, XIN Q, et al. Atomic engineering of clusterzyme for relieving zcute neuroinflammation through lattice expansion. Nano Lett., 2021, 21(6): 2562.
DOI URL |
[24] |
WANG J, MU X, LI Y, et al. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation- induced ROS via surface-mediated bond breaking. Small, 2018, 14(13): 1703736.
DOI URL |
[25] |
JIN L, MENG Z, ZHANG Y, et al. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces, 2017, 9(11): 10027.
DOI URL |
[26] |
SUN D, PANG X, CHENG Y, et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug- resistant bacterial infection. ACS Nano, 2020, 14(2): 2063.
DOI URL |
[27] |
FANG G, LI W, SHEN X, et al. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat. Commun., 2018, 9(1): 129.
DOI PMID |
[28] |
GE C, FANG G, SHEN X, et al. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano, 2016, 10(11): 10436.
DOI URL |
[29] |
MU X, WANG J, LI Y, et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano, 2019, 13(2): 1870.
DOI PMID |
[30] | LI S, XU B, LU M, et al. Tensile-strained palladium nanosheets for synthetic catalytic therapy and phototherapy. Adv. Mater., 2022, 34(32): 2202609. |
[31] |
FENG D, GU Z, LI J, et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed., 2012, 51(41): 10307.
DOI PMID |
[32] |
ZHAO M, WANG Y, MA Q, et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater., 2015, 27(45): 7372.
DOI |
[33] |
WANG J, HUANG R, QI W, et al. Preparation of amorphous MOF based biomimetic nanozyme with high laccase- and catecholase- like activity for the degradation and detection of phenolic compounds. Chem. Eng. J., 2022, 434: 134677.
DOI URL |
[34] | ZHANG L, ZHANG Y, WANG Z, et al. Constructing metal-organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater Horizons, 2019, 6(8): 1682. |
[35] |
ZHANG X, HUANG X, WANG Z, et al. Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments. Chem. Eng. J., 2022, 429: 132243.
DOI URL |
[36] |
WEI H, WANG E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev., 2013, 42(14): 6060.
DOI PMID |
[37] |
WANG H, WAN K, SHI X. Recent advances in nanozyme research. Adv. Mater., 2019, 31(45): 1805368.
DOI URL |
[38] |
CHEN K, SUN S, WANG J, et al. Catalytic nanozymes for central nervous system disease. Coord. Chem. Rev., 2021, 432: 213751.
DOI URL |
[39] |
PEI J, ZHAO R, MU X, et al. Single-atom nanozymes for biological applications. Biomater. Sci., 2020, 8(23): 6428.
DOI URL |
[40] |
DONG H, FAN Y, ZHANG W, et al. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem., 2019, 30(5): 1273.
DOI URL |
[41] |
NIU K, ZUO Z, LU X, et al. Ultrathin graphdiyne nanosheets confining Cu quantum dots as robust electrocatalyst for biosensing featuring remarkably enhanced activity and stability. Biosens. Bioelectron., 2022, 205: 114111.
DOI URL |
[42] |
XIANG H, YOU C, LIU W, et al. Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials, 2021, 277: 121071.
DOI URL |
[43] | XU W, QIAN J, HOU G, et al. A hollow amorphous bimetal organic framework for synergistic cuproptosis/ferroptosis/apoptosis anticancer therapy via disrupting intracellular redox homeostasis and copper/iron metabolisms. Adv. Funct. Mater., 2022, 32(40): 2205013. |
[44] |
CHEN W, CHEN J, LIU A, et al. Peroxidase-like activity of cupric oxide nanoparticle. ChemCatChem, 2011, 3(7): 1151.
DOI URL |
[45] |
DUTTA A, DAS S, SAMANTA S, et al. CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level. Talanta, 2013, 107: 361.
DOI PMID |
[46] |
YANG Z, CAO Y, LI J, et al. Smart CuS nanoparticles as peroxidase mimetics for the design of novel label-free chemiluminescent immunoassay. ACS Appl. Mater. Interfaces, 2016, 8(19): 12031.
DOI URL |
[47] |
TAN H, LI Q, ZHOU Z, et al. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal. Chim. Acta, 2015, 856: 90.
DOI PMID |
[48] |
ŠULCE A, BULKE F, SCHOWALTER M, et al. Reactive oxygen species (ROS) formation ability and stability of small copper (Cu) nanoparticles (NPs). RSC Adv., 2016, 6(80): 76980.
DOI URL |
[49] |
THIYAM D, NONGMEIKAPAM A, NANDEIBAM A, et al. Biosynthesized quantum dot size Cu nanocatalyst: peroxidase mimetic and aqueous phase conversion of fructose. ChemistrySelect, 2018, 3(43): 12183.
DOI URL |
[50] |
PENG Y, REN Y, ZHU H, et al. Ultrasmall copper nanoclusters with multi-enzyme activities. RSC Adv., 2021, 11(24): 14517.
DOI PMID |
[51] |
HUANG L, CHEN J, GAN L, et al. Single-atom nanozymes. Sci. Adv., 2019, 5(5): eaav5490.
DOI URL |
[52] | LU X, GAO S, LIN H, et al. Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy. Adv. Mater., 2020, 32(36): 2002246. |
[53] |
LI Y, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019, 13(8): 9198.
DOI URL |
[54] |
ROSENBAUM J, VERSACE D, ABBAD S, et al. Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants. Biomater. Sci., 2017, 5(3): 455.
DOI URL |
[55] |
AKHAVAN O, GHADERI E. Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf. Coat Technol., 2010, 205(1): 219.
DOI URL |
[56] |
MA B, WANG S, LIU F, et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc., 2019, 141(2): 849.
DOI URL |
[57] |
CZESCIK J, ZAMOLO S, DARBRE T, et al. A gold nanoparticle nanonuclease relying on a Zn (II) mononuclear complex. Angew. Chem. Int. Ed., 2021, 133(3): 1443.
DOI URL |
[58] |
LIU Y, NIE N, TANG H, et al. Effective antibacterial activity of degradable copper-doped phosphate-based glass nanozymes. ACS Appl. Mater. Interf., 2021, 13(10): 11631.
DOI URL |
[59] |
WANG J, HUANG R, QI W, et al. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B, 2019, 254: 452.
DOI URL |
[60] |
NASARUDDIN R R, CHEN T, YAN N, et al. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coord. Chem. Rev., 2018, 368: 60.
DOI URL |
[61] |
CHEN T, YAO Q, NASARUDDIN R R, et al. Electrospray ionization mass spectrometry: a powerful platform for noble-metal nanocluster analysis. Angew. Chem. Int. Ed., 2019, 58(35): 11967.
DOI PMID |
[62] |
LIU C, CAI Y, WANG J, et al. Facile preparation of homogeneous copper nanoclusters exhibiting excellent tetraenzyme mimetic activities for colorimetric glutathione eensing and fluorimetric ascorbic acid sensing. ACS Appl. Mater. Interf., 2020, 12(38): 42521.
DOI URL |
[63] |
LIU H, LI Y, SUN S, et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single- atom substitutions. Nat. Commun., 2021, 12(1): 114.
DOI |
[64] |
MENG F, PENG M, CHEN Y, et al. Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Appl. Catal. B, 2022, 301: 120826.
DOI URL |
[65] |
LIN L, HUANG T, SONG J, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc., 2019, 141(25): 9937.
DOI URL |
[66] |
LI F, CHANG Q, LI N, et al. Carbon dots-stabilized Cu4O3 for a multi-responsive nanozyme with exceptionally high activity. Chem. Eng. J., 2020, 394: 125045.
DOI URL |
[67] |
WEN M, OUYANG J, WEI C, et al. Artificial enzyme catalyzed cascade reactions: antitumor immunotherapy reinforced by NIR-II light. Angew. Chem. Int. Ed., 2019, 58(48): 17425.
DOI PMID |
[68] |
HAO C, QU A, XU L, et al. Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc., 2019, 141(2): 1091.
DOI URL |
[69] |
WANG D, WU H, WANG C, et al. Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angew. Chem. Int. Ed., 2021, 133(6): 3038.
DOI URL |
[70] |
CHEN Y, ZOU H, YAN B, et al. Atomically dispersed Cu nanozyme with intensive ascorbate peroxidase mimic activity capable of alleviating ROS-mediated oxidation damage. Adv. Sci., 2022, 9(5): 2103977.
DOI URL |
[71] |
ZHANG L, LIU Z, DENG Q, et al. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem. Int. Ed., 2021, 60(7): 3469.
DOI PMID |
[72] |
ZHANG Y, WANG F, LIU C, et al. Nanozyme decorated metal- organic frameworks for enhanced photodynamic therapy. ACS Nano, 2018, 12(1): 651.
DOI URL |
[73] | PAN X, WU N, TIAN S, et al. Inhalable MOF-derived nanoparticles for sonodynamic therapy of bacterial pneumonia. Adv. Funct. Mater., 2022, 32(25): 2112145. |
[74] |
WANG C, CAO F, RUAN Y, et al. Specific generation of singlet oxygen through the Russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy. Angew. Chem. Int. Ed., 2019, 131(29): 9951.
DOI URL |
[75] |
WANG Z, ZHANG R, YAN X, et al. Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater. Today, 2020, 41: 81.
DOI URL |
[76] | WU T, HUANG S, YANG H, et al. Bimetal biomimetic engineering utilizing metal-organic frameworks for superoxide dismutase mimic. ACS Mater. Lett., 2022, 4(4): 751. |
[77] |
JI S, JIANG B, HAO H, et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal., 2021, 4(5): 407.
DOI |
[78] |
XING Y, WANG L, WANG L, et al. Flower-like nanozymes with large accessibility of single atom catalysis sites for ROS generation boosted tumor therapy. Adv. Funct. Mater., 2022, 32(16): 2111171.
DOI URL |
[79] |
ZHANG S, LI Y, SUN S, et al. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat. Commun., 2022, 13(1): 4744.
DOI PMID |
[80] |
WANG X, SHI Q, ZHA Z, et al. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater., 2021, 6(12): 4389.
DOI PMID |
[81] | CHANG M, HOU Z, WANG M, et al. Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew. Chem. Int. Ed., 2022, 61(50): e202209245. |
[82] |
ZHANG W, HU S, YIN J, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc., 2016, 138(18): 5860.
DOI PMID |
[83] |
LI L, LI S, WANG S, et al. Antioxidant and anti-glycated TAT-modified platinum nanoclusters as eye drops for non-invasive and painless relief of diabetic cataract in rats. Chem. Eng. J., 2020, 398: 125436.
DOI URL |
[84] |
WU H, XIA F, ZHANG L, et al. A ROS-sensitive nanozyme- augmented photoacoustic nanoprobe for early diagnosis and therapy of acute liver failure. Adv. Mater., 2022, 34(7): 2108348.
DOI URL |
[85] |
LIU Y, MAO Y, XU E, et al. Nanozyme scavenging ROS for prevention of pathologic, α-synuclein transmission in Parkinson’s disease. Nano Today, 2021, 36: 101027.
DOI URL |
[86] |
IU T, XIAO B, XIANG F, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun., 2020, 11(1): 2788.
DOI PMID |
[87] |
WU H, LIU L, SONG L, et al. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano, 2019, 13(12): 14013.
DOI PMID |
[88] |
PENG W, LI S, ZHANG Y, et al. A double DNAzyme-loaded MnO2 versatile nanodevice for precise cancer diagnosis and self- sufficient synergistic gene therapy. Chem. Eng. J., 2022, 450: 138138.
DOI URL |
[89] |
SANG Y, CAO F, LI W, et al. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J. Am. Chem. Soc., 2020, 142(11): 5177.
DOI URL |
[90] |
FENG L, LIU B, XIE R, et al. An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater., 2021, 31(5): 2006216.
DOI URL |
[91] |
WANG T, DONG D, CHEN T, et al. Acidity-responsive cascade nanoreactor based on metal-nanozyme and glucose oxidase combination for starving and photothermal-enhanced chemodynamic antibacterial therapy. Chem. Eng. J., 2022, 446: 137172.
DOI URL |
[92] |
XI J, WEI G, AN L, et al. Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett., 2019, 19(11): 7645.
DOI PMID |
[93] |
LI S, LIU X, CHAI H, et al. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trends Analyt. Chem., 2018, 105: 391.
DOI URL |
[94] |
CHENG D, QIN J, FENG Y, et al. Synthesis of mesoporous CuO hollow sphere nanozyme for paper-based hydrogen peroxide sensor. Biosensors, 2021, 11(8): 258.
DOI URL |
[95] |
ZHU W, CHENG Y, WANG C, et al. Fabrication of a tubular CuO/NiO biomimetic nanozyme with synergistically promoted peroxidase-like performance for isoniazid sensing. Inorg. Chem., 2022, 61(41): 16239.
DOI URL |
[96] |
WU Y, WU J, JIAO L, et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem., 2020, 92(4): 3373.
DOI PMID |
[97] | HE S, BALASUBRAMANIAN P, HU A, et al. One-pot cascade catalysis at neutral pH driven by CuO tandem nanozyme for ascorbic acid and alkaline phosphatase detection. Sens. Actuators B Chem., 2020, 321: 128511. |
[98] |
JIN X, ZHANG W, SHAN J, et al. Thermosensitive hydrogel loaded with nickel-copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing. ACS Appl. Mater. Interfaces, 2022, 14(45): 50677.
DOI URL |
[99] |
XU P, HUANG W, YANG J, et al. Copper-rich multifunctional Prussian blue nanozymes for infected wound healing. Int. J. Biol. Macromol., 2022, 227: 1258.
DOI PMID |
[100] |
PENG Y, HE D, GE X, et al. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater., 2021, 6(10): 3109.
DOI PMID |
[101] |
HOU G, XU W, GUO M, et al. Full-active Cu2O/drug core/shell nanoparticles based on “grafting from” drug coordination polymerization combined with PD-1 blockade for efficient cancer therapy. Chem. Eng. J., 2022, 441: 135993.
DOI URL |
[102] |
FU L, WAN Y, QI C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater., 2021, 33(7): 2006892.
DOI URL |
[103] |
HUA Y, HUANG J, SHAO Z, et al. Composition-dependent enzyme mimicking activity and radiosensitizing effect of bimetallic clusters to modulate tumor hypoxia for enhanced cancer therapy. Adv. Mater., 2022, 34(31): 2203734.
DOI URL |
[104] |
HU B, XIAO X, CHEN P, et al. Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanoparticles as radiosensitizers with dual enzyme-like activities. Biomaterials, 2022, 290: 121811.
DOI URL |
[105] |
ZHU D, LING R, CHEN H, et al. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res., 2022, 15(8): 7320.
DOI |
[106] |
HOU G, QIAN J, GUO M, et al. Copper coordinated nanozyme- assisted photodynamic therapy for potentiating PD-1 blockade through amplifying oxidative stress. Chem. Eng. J., 2022, 435: 134778.
DOI URL |
[107] | MENG Y, CHEN Y, ZHU J, et al. Polarity control of DNA adsorption enabling the surface functionalization of CuO nanozymes for targeted tumor therapy. Mater. Horizons, 2021, 8(3): 972. |
[108] |
LIU H, HAN Y, WANG T, et al. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc., 2020, 142(52): 21730.
DOI URL |
[109] |
FENG Q, ZHANG Y, ZHANG W, et al. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater., 2016, 38: 129.
DOI PMID |
[110] |
DENG X, LI K, CAI X, et al. A hollow-structured CuS@Cu2S@Au nanohybrid: synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics. Adv. Mater., 2017, 29(36): 1701266.
DOI URL |
[111] |
WU W, YU L, JIANG Q, et al. Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-to- toxicity transition. J. Am. Chem. Soc., 2019, 141(29): 11531.
DOI URL |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | JIN Sai, LIU Xiaogen, QI Shuang, ZHAO Runchang, LI Zhijun. Fused Silica Glass: Laser-induced Damage on Bending Strength Weakening and Safety Design [J]. Journal of Inorganic Materials, 2023, 38(6): 671-677. |
[3] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[4] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[5] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[6] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[7] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[8] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[9] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[10] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[11] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[14] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[15] | SUN Jingwei, WANG Honglei, SUN Chuhan, ZHOU Xingui, JI Xiaoyu. Effects of Carbon Sources on Structure and Properties of TaC Ceramic Powder Prepared by Polymer Derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(2): 184-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||