Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (4): 337-344.DOI: 10.15541/jim20140364
• Orginal Article • Next Articles
LI Lei, LIANG Li-Zhi, WU Heng, LIANG Shuang, ZHU Ying-Ying, ZHU Xin-Hua
Received:
2014-07-14
Revised:
2014-09-24
Published:
2015-04-29
Online:
2015-03-26
About author:
LI Lei. E-mail: lilei7151990@126.com
Supported by:
CLC Number:
LI Lei, LIANG Li-Zhi, WU Heng, LIANG Shuang, ZHU Ying-Ying, ZHU Xin-Hua. Advances on Low-dimensional Perovskite Manganite Nanostructures[J]. Journal of Inorganic Materials, 2015, 30(4): 337-344.
Fig. 1 (a) SEM image of La0.5Sr0.5MnO3 nanowires. The inset is the XRD pattern of La0.5Sr0.5MnO3 nanowires;(b) TEM image of a single nanowire with a diameter around 45 nm. The inset in the top left corner is the HRTEM image of a single La0.5Sr0.5MnO3 nanowires. The inset in the lower right corner is the selected area diffraction pattern taken with TEM[11]
Fig. 2 Atomic force microscope (AFM) image of a La2/3Sr1/3MnO3 nanodot array[14](a) 3D AFM image of a 3680 nm×3680 nm section of the array. (b) AFM profiles of three representative dots from the AFM image in (a). Dot diameters are ~100 nm, heights are 37 nm
Fig. 4 Pairing of charge-ordered stripes in La0.33Ca0.67MnO3 (a) High-resolution lattice image obtained at 95 K; (b) Schematic model in the a-b plane showing the pairing and orbital ordering of Mn3+ and Mn4+ [23]
[1] | CHEN C X.Charge ordering in the perovskite manganites.Journal of Inorganic Materials, 2005, 20(1): 1-12. |
[2] | HAN L A, MOU G D, HE Y J.Research progress in phase separation in perovskite-type manganese oxides.Materials Review, 2008, 22(z1): 310-313. |
[3] | LIU Y K, YIN Y W, LI X G. Colossal magnetoresistance in manganites and related prototype devices. Chinese Physics B, 2013, 22(8): 087502-1-19. |
[4] | LIU P, PENG Z S.Research in phase separation of perovskite-type manganese oxides.Journal of Suzhou College, 2009, 24(1): 107-110. |
[5] | ZENER C.Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure.Physical Review, 1951, 82(3): 403-405. |
[6] | MINIS A J, SHRAIMAN B I, MUELLER R.Dynamic Jahn-Teller effect and colossal magnetoresistance in La1-xSrxMnO3.Physical Review Letters, 1996, 77(1): 175-178. |
[7] | TOKURA Y.Correlated-electron physics in transitional-metal oxides.Physics Today, 2003, 56(7): 50-55. |
[8] | DAGOTTO E.Complexity in strongly correlated electronic systems.Science, 2005, 309(5732): 257-262. |
[9] | TSAY C Y, HUANG Y H, HUNG D S.Enhanced microwave absorption of La0.7Sr0.3MnO3-δ based composites with added carbon black.Ceramics International, 2014, 40(3): 3947-3951. |
[10] | ZABALETA J, JAAFAR M,ABELLÁN P, et al. Nanoscale magnetic structure and properties of solution-derived self-assembled La0.7Sr0.3MnO3 islands. Journal of Applied Physics, 2012, 111(2): 024307-1-8. |
[11] | DATTA S,CHANDRA S,SAMANTA S, et al. Growth and physical property study of single nanowire (diameter ∼ 45 nm) of half doped manganite. Journal of Nanomaterials, 2013, 2013: 162315-1-6. |
[12] | BANERJEE N, KRUPANIDHI S B.Anomalous magnetic behavior of La0.6Sr0.4MnO3 nano-tubes constituted with 3-12 nm particles. Applied Physics A, 2013, 111(2): 605-612. |
[13] | QI S Y, FENG J, XU X D, et al.Preparation and magnetic property of La0.7Sr0.3MnO3 nanorod by combination Sol-Gel with molten salt.Chemical Research in Chinese Universities, 2008, 24(6): 672-674. |
[14] | RUZMETOV D, SEO Y, BELENKY L J, et al.Epitaxial magnetic perovskite nanostructures.Advanced Materials, 2005, 17(23): 2869-2872. |
[15] | LIANG L Z, LI L, WU H, et al. Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures. Nanoscale Research Letters, 2014, 9(1): 325-1-14. |
[16] | ZHANG T, WANG X P, FANG Q F.Evolution of the electronic phase separation with magnetic field in bulk and nanometer Pr0.67Ca0.33MnO3 particles.Journal of Physical Chemistry C, 2011, 115(40): 19482-19487. |
[17] | LI L, LI H, ZHAI X F, et al. Fabrication and magnetic properties of single-crystalline La0.33Pr0.34Ca0.33MnO3/MgO nanowires. Applied Physics Letters, 2013, 103(11):113101-1-4. |
[18] | MOREO A, YUNOKI S, DAGOTTO E.Phase separation scenario for manganese oxides and related materials.Science, 1999, 283(5410): 2034-2040. |
[19] | YUNOKI S, MOREO A.Static and dynamical properties of the ferromagnetic Kondo model with direct antife fromagnetic coupling between the localized t2g electrons.Physical Review Letters, 1998, 58(10):6403-6413. |
[20] | YUNOKI S, MOREO A, DAGOTTO E.Phase separation induced by orbital degrees of freedom in models for manganites with Jahn-Teller phonons.Physical Review Letters, 1998, 81(25): 5612-5615. |
[21] | CHEN C H, CHEONG S W.Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5 MnO3.Physical Review Letters, 1996, 76(21): 4042-4045. |
[22] | RADAELI P G, COX D E, MAREZIO M, et al.Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3s.Physical Review B, 1997, 55(5):3015-3023. |
[23] | MORI S, CHEN C H, CHEONG S W.Pairing of charge-ordered stripes in (La,Ca)MnO3.Nature, 1998, 392(6675): 473-476. |
[24] | ZHANG T, ZHOU T F, QIAN T, et al. Particle size effects on interplay between charge ordering and magnetic properties in nanosized La0.25Ca0.75MnO3. Physical Review B, 2007, 76: 174415-1-7. |
[25] | HUANG X H, DING J F, ZHANG G Q, et al. Size-dependent exchange bias in La0.25Ca0.75MnO3 nanoparticles. Physical Review B, 2008, 78: 224408-1-5. |
[26] | WANG Y F, YANG H, XIAN T, et al.Preparation and photocatalytic properties of La0.7Sr0.3MnO3 nanoparticles. Chinese Journal of Materials Research, 2012, 26(5): 476-482. |
[27] | JUGDERSUREN B, KANG S M, DIPIETRO R S, et al. Large low field magnetoresistance in La0.67Sr0.33MnO3 nanowire devices. Applied Physics Letters, 2011, 109(1): 016109-1-3. |
[28] | MARÍN L, MORELLÓN L, ALGARABEL P A, et al. Enhanced magnetotransport in nanopatterned manganite nanowires.Nano Letters, 2014, 14(2): 423-428. |
[29] | JIANG T, YANG S W, ZHOU H B, et al. Colossal anisotropic resistivity and oriented magnetic domains in strained La0.325Pr0.3Ca0.375MnO3 films. Applied Physics Letters, 2014, 104: 203501-1-5. |
[30] | NORI R,KALE S N, GANGULY U, et al. Morphology and Curie temperature engineering in crystalline La0.7Sr0.3MnO3 films on Si by pulsed laser deposition. Journal of Applied Physics, 2014, 115(3): 033518-1-11. |
[31] | HIROOKA M, YANAGISAWA Y, KANKI T, et al. Fabrication of sub-50 nm (La,Ba)MnO3 ferromagnetic nanochannels by atomic force microscopy lithography and their electrical properties. Applied Physics Letters, 2006, 89(16): 163113-1-3. |
[32] | GUO X, LI P G, WANG X, et al.Anomalous positive magnetoresistance effect in La0.67Ca0.33MnO3 microbridges.Journal of Alloys and Compounds, 2009, 485(1/2): 802-806. |
[33] | KIM E J, WATTS J L R, HARTENECK B, et al. Magnetic domain structure of La0.7Sr0.3MnO3 nanoislands: experiment and simulation. Journal of Applied Physics, 2011, 109(7): 07D712. |
[34] | JIN K X, CHEN C L, ZHAO S G, et al.Spin transport properties of the thin film doped with La0.85Sr0.015MnO3.Rare Metal Materials And Engineering, 2007, 36(8): 1362-1365. |
[35] | TANG X Y, JIN K X, ZHANO S G, et al.The vacumm annealing effect on the photoinduced properties in La0.7Sr0.3MnO3 thin film.Chinese Journal of Material Research, 2009, 23(4): 395-398. |
[36] | LIU D Q, WANG N N,WANG G, et al.Programmable metallization cells based on amorphous La0.79Sr0.21MnO3 thin films for memory applications.Journal of Alloys and Compounds, 2013, 580: 354-357. |
[37] | HOFFMAN J, HONG X, AHN C H. Device performance of ferroelectric/correlated oxide heterostructures for non-volatile memory applications. Nanotechnology, 2011, 22(25): 254014-1-4. |
[38] | HU M J, MA B W, WANG Z.Research on amperometric-type NOx sensor based on La1-xSrxMnO3 sensitive materials.Chinese Journal of Analytical Chemistry, 2013, 41(10): 1531-1536. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||