Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (4): 337-344.DOI: 10.15541/jim20140364
• Orginal Article • Next Articles
LI Lei, LIANG Li-Zhi, WU Heng, LIANG Shuang, ZHU Ying-Ying, ZHU Xin-Hua
Received:
2014-07-14
Revised:
2014-09-24
Published:
2015-04-29
Online:
2015-03-26
About author:
LI Lei. E-mail: lilei7151990@126.com
Supported by:
CLC Number:
LI Lei, LIANG Li-Zhi, WU Heng, LIANG Shuang, ZHU Ying-Ying, ZHU Xin-Hua. Advances on Low-dimensional Perovskite Manganite Nanostructures[J]. Journal of Inorganic Materials, 2015, 30(4): 337-344.
Fig. 1 (a) SEM image of La0.5Sr0.5MnO3 nanowires. The inset is the XRD pattern of La0.5Sr0.5MnO3 nanowires;(b) TEM image of a single nanowire with a diameter around 45 nm. The inset in the top left corner is the HRTEM image of a single La0.5Sr0.5MnO3 nanowires. The inset in the lower right corner is the selected area diffraction pattern taken with TEM[11]
Fig. 2 Atomic force microscope (AFM) image of a La2/3Sr1/3MnO3 nanodot array[14](a) 3D AFM image of a 3680 nm×3680 nm section of the array. (b) AFM profiles of three representative dots from the AFM image in (a). Dot diameters are ~100 nm, heights are 37 nm
Fig. 4 Pairing of charge-ordered stripes in La0.33Ca0.67MnO3 (a) High-resolution lattice image obtained at 95 K; (b) Schematic model in the a-b plane showing the pairing and orbital ordering of Mn3+ and Mn4+ [23]
[1] | CHEN C X.Charge ordering in the perovskite manganites.Journal of Inorganic Materials, 2005, 20(1): 1-12. |
[2] | HAN L A, MOU G D, HE Y J.Research progress in phase separation in perovskite-type manganese oxides.Materials Review, 2008, 22(z1): 310-313. |
[3] | LIU Y K, YIN Y W, LI X G. Colossal magnetoresistance in manganites and related prototype devices. Chinese Physics B, 2013, 22(8): 087502-1-19. |
[4] | LIU P, PENG Z S.Research in phase separation of perovskite-type manganese oxides.Journal of Suzhou College, 2009, 24(1): 107-110. |
[5] | ZENER C.Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure.Physical Review, 1951, 82(3): 403-405. |
[6] | MINIS A J, SHRAIMAN B I, MUELLER R.Dynamic Jahn-Teller effect and colossal magnetoresistance in La1-xSrxMnO3.Physical Review Letters, 1996, 77(1): 175-178. |
[7] | TOKURA Y.Correlated-electron physics in transitional-metal oxides.Physics Today, 2003, 56(7): 50-55. |
[8] | DAGOTTO E.Complexity in strongly correlated electronic systems.Science, 2005, 309(5732): 257-262. |
[9] | TSAY C Y, HUANG Y H, HUNG D S.Enhanced microwave absorption of La0.7Sr0.3MnO3-δ based composites with added carbon black.Ceramics International, 2014, 40(3): 3947-3951. |
[10] | ZABALETA J, JAAFAR M,ABELLÁN P, et al. Nanoscale magnetic structure and properties of solution-derived self-assembled La0.7Sr0.3MnO3 islands. Journal of Applied Physics, 2012, 111(2): 024307-1-8. |
[11] | DATTA S,CHANDRA S,SAMANTA S, et al. Growth and physical property study of single nanowire (diameter ∼ 45 nm) of half doped manganite. Journal of Nanomaterials, 2013, 2013: 162315-1-6. |
[12] | BANERJEE N, KRUPANIDHI S B.Anomalous magnetic behavior of La0.6Sr0.4MnO3 nano-tubes constituted with 3-12 nm particles. Applied Physics A, 2013, 111(2): 605-612. |
[13] | QI S Y, FENG J, XU X D, et al.Preparation and magnetic property of La0.7Sr0.3MnO3 nanorod by combination Sol-Gel with molten salt.Chemical Research in Chinese Universities, 2008, 24(6): 672-674. |
[14] | RUZMETOV D, SEO Y, BELENKY L J, et al.Epitaxial magnetic perovskite nanostructures.Advanced Materials, 2005, 17(23): 2869-2872. |
[15] | LIANG L Z, LI L, WU H, et al. Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures. Nanoscale Research Letters, 2014, 9(1): 325-1-14. |
[16] | ZHANG T, WANG X P, FANG Q F.Evolution of the electronic phase separation with magnetic field in bulk and nanometer Pr0.67Ca0.33MnO3 particles.Journal of Physical Chemistry C, 2011, 115(40): 19482-19487. |
[17] | LI L, LI H, ZHAI X F, et al. Fabrication and magnetic properties of single-crystalline La0.33Pr0.34Ca0.33MnO3/MgO nanowires. Applied Physics Letters, 2013, 103(11):113101-1-4. |
[18] | MOREO A, YUNOKI S, DAGOTTO E.Phase separation scenario for manganese oxides and related materials.Science, 1999, 283(5410): 2034-2040. |
[19] | YUNOKI S, MOREO A.Static and dynamical properties of the ferromagnetic Kondo model with direct antife fromagnetic coupling between the localized t2g electrons.Physical Review Letters, 1998, 58(10):6403-6413. |
[20] | YUNOKI S, MOREO A, DAGOTTO E.Phase separation induced by orbital degrees of freedom in models for manganites with Jahn-Teller phonons.Physical Review Letters, 1998, 81(25): 5612-5615. |
[21] | CHEN C H, CHEONG S W.Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5 MnO3.Physical Review Letters, 1996, 76(21): 4042-4045. |
[22] | RADAELI P G, COX D E, MAREZIO M, et al.Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3s.Physical Review B, 1997, 55(5):3015-3023. |
[23] | MORI S, CHEN C H, CHEONG S W.Pairing of charge-ordered stripes in (La,Ca)MnO3.Nature, 1998, 392(6675): 473-476. |
[24] | ZHANG T, ZHOU T F, QIAN T, et al. Particle size effects on interplay between charge ordering and magnetic properties in nanosized La0.25Ca0.75MnO3. Physical Review B, 2007, 76: 174415-1-7. |
[25] | HUANG X H, DING J F, ZHANG G Q, et al. Size-dependent exchange bias in La0.25Ca0.75MnO3 nanoparticles. Physical Review B, 2008, 78: 224408-1-5. |
[26] | WANG Y F, YANG H, XIAN T, et al.Preparation and photocatalytic properties of La0.7Sr0.3MnO3 nanoparticles. Chinese Journal of Materials Research, 2012, 26(5): 476-482. |
[27] | JUGDERSUREN B, KANG S M, DIPIETRO R S, et al. Large low field magnetoresistance in La0.67Sr0.33MnO3 nanowire devices. Applied Physics Letters, 2011, 109(1): 016109-1-3. |
[28] | MARÍN L, MORELLÓN L, ALGARABEL P A, et al. Enhanced magnetotransport in nanopatterned manganite nanowires.Nano Letters, 2014, 14(2): 423-428. |
[29] | JIANG T, YANG S W, ZHOU H B, et al. Colossal anisotropic resistivity and oriented magnetic domains in strained La0.325Pr0.3Ca0.375MnO3 films. Applied Physics Letters, 2014, 104: 203501-1-5. |
[30] | NORI R,KALE S N, GANGULY U, et al. Morphology and Curie temperature engineering in crystalline La0.7Sr0.3MnO3 films on Si by pulsed laser deposition. Journal of Applied Physics, 2014, 115(3): 033518-1-11. |
[31] | HIROOKA M, YANAGISAWA Y, KANKI T, et al. Fabrication of sub-50 nm (La,Ba)MnO3 ferromagnetic nanochannels by atomic force microscopy lithography and their electrical properties. Applied Physics Letters, 2006, 89(16): 163113-1-3. |
[32] | GUO X, LI P G, WANG X, et al.Anomalous positive magnetoresistance effect in La0.67Ca0.33MnO3 microbridges.Journal of Alloys and Compounds, 2009, 485(1/2): 802-806. |
[33] | KIM E J, WATTS J L R, HARTENECK B, et al. Magnetic domain structure of La0.7Sr0.3MnO3 nanoislands: experiment and simulation. Journal of Applied Physics, 2011, 109(7): 07D712. |
[34] | JIN K X, CHEN C L, ZHAO S G, et al.Spin transport properties of the thin film doped with La0.85Sr0.015MnO3.Rare Metal Materials And Engineering, 2007, 36(8): 1362-1365. |
[35] | TANG X Y, JIN K X, ZHANO S G, et al.The vacumm annealing effect on the photoinduced properties in La0.7Sr0.3MnO3 thin film.Chinese Journal of Material Research, 2009, 23(4): 395-398. |
[36] | LIU D Q, WANG N N,WANG G, et al.Programmable metallization cells based on amorphous La0.79Sr0.21MnO3 thin films for memory applications.Journal of Alloys and Compounds, 2013, 580: 354-357. |
[37] | HOFFMAN J, HONG X, AHN C H. Device performance of ferroelectric/correlated oxide heterostructures for non-volatile memory applications. Nanotechnology, 2011, 22(25): 254014-1-4. |
[38] | HU M J, MA B W, WANG Z.Research on amperometric-type NOx sensor based on La1-xSrxMnO3 sensitive materials.Chinese Journal of Analytical Chemistry, 2013, 41(10): 1531-1536. |
[1] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[4] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[5] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[6] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[7] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[11] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[12] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[13] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[14] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[15] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||