Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (10): 1009-1017.DOI: 10.15541/jim20150060
• Orginal Article • Next Articles
LIU Jia-Qin1,2, WU Yu-Cheng2
Received:
2015-01-28
Revised:
2015-04-14
Published:
2015-10-20
Online:
2015-09-30
About author:
LIU Jia-Qin. E-mail:jqliu@hfut.edu.cn
Supported by:
CLC Number:
LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the High Performance BiOX(X=Cl, Br, I) Based Photo-catalysts[J]. Journal of Inorganic Materials, 2015, 30(10): 1009-1017.
Fig. 5 Morphology (a), optical absorption characteristic (b) and photocatalytic performance (c, d) of undoped and Mn-doped BiOCl particles under visible light irradiation[47]
[1] | HASHIMOTO K, IRIE H, FUJISHIMA A.TiO2 photocatalysis: a historical overview and future prospects.Jpn. J. Appl. Phys., 2005, 44(12): 8269-8285. |
[2] | KUMAR S G, DEVI L G.Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics.J. Phys. Chem. A, 2011, 115(46): 13211-13241. |
[3] | DAGHRIR R, DROGUI P, ROBERT D.Modified TiO2 for environmental photocatalytic applications: a review.Ind. Eng. Chem. Res., 2013, 52(10): 3581-3599. |
[4] | ZHANG X, AN Z H, JIA F L, et al.Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres.J. Phys. Chem. C, 2008, 112(3): 747-753. |
[5] | AN H Z, DU Y, WANG T M, et al.Photocatalytic properties of BiOX (X = Cl, Br, and I).Rare Metals, 2008, 27(3): 243-250. |
[6] | CHANG X F, HUANG J, CHENG C, et al.BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: characterization and catalytic performance. Catal. Comm., 2010, 11(5): 460-464. |
[7] | HENLE J, SIMON P, FRENZEL A, et al.Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions.Chem. Mater., 2007, 19(3): 366-373. |
[8] | ZHOU L, WANG W Z, XU H L, et al.Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis.Chem. Eur. J., 2009, 15(7): 1776-1782. |
[9] | SAISON T, CHEMIN N, CHANÉAC C, et al. Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light.J. Phys. Chem. C, 2011, 115(13): 5657-5666. |
[10] | KOHTANI S, KOSHIKO M, KUDO A, et al.Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator.Appl. Catal. B: Environ., 2003, 46(3): 573-586. |
[11] | TOKUNAGA S, KATO H, KUDO A.Selective preparation of monoclinic and tetragonal bivo4 with scheelite structure and their photocatalytic properties.Chem. Mater., 2001, 13(12): 4624-4628. |
[12] | TANG J W, ZOU Z G, YE J H. photocatalytic decomposition of organic contaminants by bi2wo6 under visible light irradiation.Catal. Lett., 2004, 92(1/2): 53-56. |
[13] | ZHANG C, ZHU Y F. synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalyst.Chem. Mater., 2005, 17(13): 3537-3545. |
[14] | FU H B, PAN C S, YAO W Q, et al.Visible-light-induced degradation of rhodamine b by nanosized Bi2WO6.J. Phys. Chem. B, 2005, 109(47): 22432-22439. |
[15] | YAO W F, WANG H, XU X H, et al.Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12.Mater. Lett., 2003, 57(13/14): 1899-1902. |
[16] | HOU D F, LUO W, HUANG Y H, et al.Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light- driven photocatalytic properties.Nanoscale, 2013, 5: 2028-2035. |
[17] | ZHANG K L, LIU C M, HUANG F Q, et al.Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst.Appl. Catal. B: Environ., 2006, 68(3/4): 125-129. |
[18] | PARE B, SARWAN B, JONNALAGADDA S B.The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst. J. Mol. Struct., 2012, 1007: 196-202. |
[19] | DENG H, WANG J W, PENG Q, et al.Controlled hydrothermal synthesis of bismush oxyhalide nanobelts and nanotubes.Chem. Euro. J., 2005, 11: 6519-6524. |
[20] | JIANG J, ZHAO K, XIAO X Y, et al.Synthesis and facet-dependent photoreactivity of biocl single-crystalline nanosheets.J. Am. Chem. Soc., 2012, 134(10): 4473-4476. |
[21] | ZHANG J, SHI F J, LIN J, et al.Self-Assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem. Mater., 2008, 20(9): 2937-2941. |
[22] | XIA J X, YIN S, LI H M, et al.Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid.Dalton Trans., 2011, 40: 5249-5258. |
[23] | XIAO X, ZHANG W D.Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J. Mater. Chem., 2010, 20: 5866-5870. |
[24] | SHI X J, CHEN X L, CHEN X, et al.Solvothermal synthesis of BiOI hierarchical spheres with homogeneous sizes and their high photocatalytic performance.Mater. Lett., 2012, 68: 296-299. |
[25] | CAO C B, LV R T, ZHU H S.Preparation of single-crystal BiOCl nanorods via surfactant soft-template inducing growth.J. Metastab. Nanocryst. Mater., 2005, 23: 79-82. |
[26] | SHANG M, WANG W Z, ZHANG L.Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template.J. Hazard. Mater., 2009, 167(1/2/3): 803-809. |
[27] | WANG C H, SHAO C L, LIU Y C, et al.Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning.Scripta Mater., 2008, 59(3): 332-335. |
[28] | PERERA S, ZELENSKI N A, PHO R E, et al.Rapid and exothermic solid-state synthesis of metal oxyhalides and their solid solutions via energetic metathesis reactions.J. Solid State Chem., 2007, 180(10): 2916-2925. |
[29] | 魏平玉, 杨青林, 郭林. 卤氧化铋化合物光催化剂. 化工进展, 2009, 21(9): 1734-1741. |
[30] | 王燕琴, 瞿梦, 冯红武, 等. 卤氧化铋光催化剂的研究进展. 化工进展, 2014, 33(3): 660-667. |
[31] | 张喜. 新型卤化氧铋BiOX(X=Cl、Br、I)光催化剂的合成、表征及催化性能研究. 武汉: 华中师范大学博士论文, 2010. |
[32] | HUANG W L, ZHU Q S.Electronic structures of relaxed BiOX (X=F, Cl, Br, I) photocatalysts. Comput. Mater.Sci., 2008, 43(4): 1101-1108. |
[33] | HUANG W L.Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations.J. Comput. Chem., 2009, 30(12): 1882-1891. |
[34] | HUANG W L, ZHU Q S.DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states. J. Comput. Chem., 2009, 30(2): 183-190. |
[35] | YE L Q, ZAN L, TIAN L H, et al.The {001} facets-dependent high photoactivity of BiOCl nanosheets.Chem. Commun., 2011, 47: 6951-6953. |
[36] | YE L Q, DENG K J, XU F, et al.Increasing visible-light absorption for photocatalysis with black BiOCl.Phys. Chem. Chem. Phys., 2012, 14: 82-85. |
[37] | ZHU L P, LIAO G H, BING N C, et al.Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization.Cryst. Eng. Comm., 2010, 12: 3791-3796. |
[38] | CHAI S Y, KIM Y J, JUNG M H, et al.Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst.J. Catal., 2009, 262(1): 144-149. |
[39] | SHAMAILA S, SAJJAD A K L, CHEN F, et al. WO3/BiOCl, a novel heterojunction as visible light photocatalyst.J. Colloid Interface Sci., 2011, 356(2): 465-472. |
[40] | KONG L, JIANG Z, LAI H H, et al.Unusual reactivity of visible- light-responsive AgBr-BiOBr heterojunction photocatalysts.J. Catal., 2012, 293: 116-125. |
[41] | ZHANG X, ZHANG L Z, XIE T F, et al.Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem.C, 2009, 113(17): 7371-7378. |
[42] | WANG W D, HUANG F Q, LIN X P. xBiOI-(1-x)BiOCl as efficient visible light driven photocatalysts.Scripta Mater., 2007, 56(8): 669-672. |
[43] | LIU Y Y, SON W J, LU J B, et al.Composition dependence of the photocatalytic activities of BiOCl1-xBrx solid solutions under visible light.Chem. Eur. J., 2011, 17(34): 9342-9349. |
[44] | CHEN H, CHEN S, QUAN X, et al.Structuring a TiO2-based photonic crystal photocatalyst with schottky junction for efficient photocatalysis.Environ. Sci. Technol., 2010, 44(1): 451-455. |
[45] | YU C L, CAO F F, SHU Q, et al.Preparation, characterization and photocatalytic performance of Ag/BiOX (X=Cl, Br, I) composite photocatalysts.Acta Phys-Chim. Sin., 2012, 28(3): 647-653. |
[46] | YU C L, CAO F F, LI G, et al.Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation.Sep. Purif. Technol., 2013, 120: 110-122. |
[47] | PARE B, SARWAN B, JONNALAGADDA S B.Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition.Appl. Surf. Sci., 2011, 258(1): 247-253. |
[48] | WANG R J, JIANG G H, WANG X H, et al.Efficient visible- light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres. Power Technol., 2012, 228: 258-263. |
[49] | ZHANG K, ZHANG D Q, LIU J, et al.A novel nanoreactor framework of iodine-incorporated BiOCl core-shell structure: enhancedlight-harvesting system for photocatalysis.Cryst. Eng. Comm., 2012, 14: 700-707. |
[50] | ZHANG X, ZHANG L Z.Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI.J. Phys. Chem. C, 2010, 114(42): 18198-18206. |
[51] | YE L Q, GONG C Q, LIU J Y, et al.Bin(Tu)xCl3n: a novel sensitizer and its enhancement of BiOCl nanosheets’s photocatalytic activity. J. Mater. Chem., 2012, 22: 8354-8360. |
[52] | LI K, TANG Y P, XU Y L, et al. A BiOCl film synthesis from Bi2O3 film and its UV and visible light photocatalytic activity. Appl. Catal. B: Environ., 2013, 140-141: 179-188. |
[53] | LIU Z S, WU B T, NIU J N, et al.Solvothermal synthesis of BiOBr thin film and its photocatalytic performance.Appl. Surf. Sci., 2014, 288: 369-372. |
[54] | YE L Q, CHEN J N, TIAN L H, et al. BiOI thin film via chemical vapor transport: photocatalytic activity, durability, selectivity and mechanism. Appl. Catal. B: Environ., 2013, 130-131:1-7. |
[55] | GRIMES C A.Synthesis and application of highly ordered arrays of TiO2 nanotubes.J. Mater. Chem., 2007, 17: 1451-1457. |
[56] | GRIMES C A, MOR G K.TiO2 Nanotube Arrays: Synthesis, Properties, and Applications. Springer: Heidelberg, 2009: 129-146. |
[57] | CHEN X B, MAO S S.Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.Chem. Rev., 2007, 107: 2891-2959. |
[58] | 刘家琴. BiOX(X=Cl、I)/TiO2纳米复合阵列的可控构筑及其有机污染物降解性能研究. 合肥: 合肥工业大学博士学位论文, 2014. |
[59] | LIU J Q, RUAN L L, ADELOJU S B, et al.BiOI/TiO2 nanotube arrays, a unique flake-tube structured p-n junction with remarkable visble- light photoelectrocatalytic performance and stability.Dalton Trans., 2014, 43: 1706-1715. |
[60] | RUAN L L, LIU J Q, ZHOU Q, et al.A flake-tube structured BiOBr-TiO2 nanotube array heterojunction with enhanced visible light photocatalytic activity.New J. Chem., 2014, 38: 3022-3028. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[3] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[8] | CHEN Libo, SHENG Ying, WU Ming, SONG Jiling, JIAN Jian, SONG Erhong. Na and O Co-doped Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution [J]. Journal of Inorganic Materials, 2025, 40(5): 552-562. |
[9] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[10] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[11] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[12] | MU Shuang, MA Qin, ZHANG Yu, SHEN Xu, YANG Jinshan, DONG Shaoming. Oxidation Behavior of Yb2Si2O7 Modified SiC/SiC Mini-composites [J]. Journal of Inorganic Materials, 2025, 40(3): 323-328. |
[13] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[14] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[15] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||