Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (9): 907-915.DOI: 10.3724/SP.J.1077.2013.12780
• Review • Next Articles
WANG Gui-Qiang, WANG De-Long, KUANG Shuai, ZHUO Shu-Ping
Received:
2012-12-23
Revised:
2013-03-06
Published:
2013-09-20
Online:
2013-08-14
Supported by:
National Natural Science Foundation of China (21273137); Natural Science Foundation of Shandong Province (ZR2010BM038)
CLC Number:
WANG Gui-Qiang, WANG De-Long, KUANG Shuai, ZHUO Shu-Ping . Research Progress on Transition Metal Compound Used as Highly Efficient Counter Electrode of Dye-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2013, 28(9): 907-915.
Add to citation manager EndNote|Ris|BibTeX
[1] O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740.[2] Nazerruddin M K, Kay A, Rodicio I, et al. Conversion of TiO2 by Cis-x2Bis(2,2?-bipyridine-4,4?-dicarboxylate) ruthenium (II) charge-transfer sensitized on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc., 1993, 115(14): 6382-6390.[3] Hagfeldt A, Gr?etzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 1995, 95(1): 49-68.[4] Gr?tzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338-344.[5] Gr?tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem., 2004, 164(1/2/3): 3-14.[6] Yanagida S, Yu Y, Manseki K. Iodine/iodide-free dye-sensitized solar cells. Acc. Chem. Res., 2009, 42(11): 1827-1838.[7] Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells. Chem. Rev., 2010, 110(11): 6595-6663.[8] Vougioukalakis G, Philippopoulos A, Stergiopoulos T. Contributions to the development of ruthenium-based sensitizer for dye-sensitized solar cells. Coord. Chem. Rev., 2011, 255(21): 2602-2621.[9] Yella A, Lee H, Tsao H, et al. Porphyrin-sensitized solar cell with cobalt (II/III) based redox electrolyte exceed 12% efficiency. Science, 2011, 334(6056): 629-634.[10] Papageorgiou N, Maier W F, Gr?tzel M. An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J. Electrochem. Soc., 1997, 114(3): 876-884.[11] Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cells configurations. Coord. Chem. Rev., 2004, 248(13): 1421-1446.[12] Wang G, Lin R, Lin Y, et al. A novel high-performance counter electrode for dye-sensitized solar cell. Electrochim. Acta, 2005, 50(28): 5546-5552.[13] Calogero G, Calandra P, Irrera A, et al. A new transparent and low-cost counter electrode based on Pt nanoparticles for dye-sensitized solar cells. Energy Environ. Sci., 2011, 4(5): 1838-1844.[14] Sun K, Fan B, Ouyang J. Nanostructured films deposited by polyol reduction of a platinum precursor and their application as counter electrode of dye-sensitized solar cells. J. Phys. Chem. C, 2010, 114(9): 4237-4244.[15] Kay A, Gr?tzel M. Low cost photovoltaic modules base on dye-sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells, 1996, 44(1): 99-117.[16] Murakami T N, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrode. J. Electrochem. Soc., 2006, 153(12): A2255-A2261.[17] Joshi P, Zhang L, Chen Q, et al. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interface, 2010, 2(12): 3572-3577.[18] Wu M, Lin. X, Wang . T, et al. Low-cost dye-sensitized solar cells based on nine kinds of carbon counter electrode. Energy Environ. Sci., 2011, 4(6): 2308-2315.[19] Cha S, Koo B, Lee D. Pt-free transparent counter electrode for dye-sensitized solar cells prepared from carbon nanotube micro-balls. J. Mater. Chem., 2010, 20(4): 656-662.[20] Zhao B, Huang H, Jiang P, et al. Flexible counter electrode based on mesoporous carbon aerogel for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C, 2011, 115(45): 22615-22621.[21] Wang H, Hu Y. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci., 2012, 5(8): 8182-8188.[22] Trancik J, Barton S, Hone J. Transparent and catalytic carbon nanotube films. Nano Lett., 2008, 8(4): 982-987.[23] Li K, Luo Y, Yu Z, et al. Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem. Commun., 2009, 11(7): 1346-1349.[24] Jiang Q, Li G, Gao X. Highly ordered mesoporous carbon array from natural wood materials as counter electrode of dye-sensitized solar cells. Electrochem. Commun., 2010, 12(7): 924-927.[25] Xiao J, Chen L, Yanagida S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J. Mater. Chem., 2011, 21(12): 4644-4649.[26] Bu C, Tai Q, Guo S. A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. J. Power Source, 2013, 221(1): 78-83.[27] Sakurai S, Jiang H, Takahashi M. Enhanced performance of a dye-sensitized solar cell with a modified poly(3,4-ehtylenedioxy- thiophene)/TiO2/FTO counter electrode. Electrochim. Acta, 2009, 54(23): 5463-5469.[28] Wu L, Li Q, Fan L, et al. High-performance polypyrrole nanoparticles counter electrode for a dye-sensitized solar cells. J. Power Source, 2008, 181(1): 172-176.[29] Sun H, Luo Y, Zhang Y, et al. In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J. Phys. Chem. C, 2010, 114(26): 11673-11679.[30] Tai Q, Chen B, Guo F, et al. In situ prepared transparent ployaniline electrode and its application in bifacial dye-sensitized solar cell. ACS Nano, 2011, 5(5): 3795-3799.[31] Hong W, Xu Y, Shi G, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes for dye-sensitized solar cells. Electrochem. Commun., 2008, 10(10): 1555-1558.[32] Zhang J, Hreid T, Li X, et al. Nanostructured polyaniline counter electrode for dye-sensitized solar cells: fabrication and investigation of its electrochemical formation mechanism. Electrochim. Acta, 2010, 55(11): 3664-3668.[33] Chen J, Li B, Zheng J, et al. Polyaniline/carbon film as flexible counter electrode in Pt-free dye-sensitized solar cells. Electrochim. Acta, 2011, 56(12): 4624-4630.[34] Wu M, Ma T. Pt-free catalysts as counter electrodes in dye-sensitized solar cells. ChemSusChem, 2012, 5(8): 1343-1357.[35] Wang M, Anghel A, Marsan B, et al. CoS supersedes Pt as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc., 2009, 131(44): 15976-15977.[36] Lin J, Liao J, Chou S. Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta, 2011, 56(24): 8818-8826.[37] Lin J, Liao J. Mesoporous electrodeposited CoS film as a counter electrode in dye-sensitized solar cells. J. Electrochem. Soc., 2012, 159(2): D65-D71.[38] Lin J, Liao J, Wei T. Honeycomb-like CoS counter electrodes for transparent dye-sensitized solar cells. Electrochem. Solid-State Lett., 2011, 14(4): D41-D44.[39] Kung C, Chen H, Lin C, et al. CoS Acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cells. ACS Nano, 2012, 6(8): 7016-7025.[40] Chi W, Han J, Yang S, et al. Empolying electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrode. Chem. Commun., 2012, 48(76): 9501-9503.[41] Sun H, Qin D, Huang S, et al. Dye-sensitized solar cells with NiS counter electrode electrodeposited by a potential reverse technique. Energy Environ. Sci., 2011, 4(8): 2630-2637.[42] Ku Z, Li X, Liu G, et al. Transparent NiS counter electrodes for thiolate/disulfide mediated dye-sensitized solar cells. J. Mater. Chem. A, 2013, 1(2): 237-240.[43] Zhao W, Lin T, Sun S, et al. Oriented single-crystalline NiS nanorod arrays “two-in-one” counter electrode for dye-sensitized solar cells. J. Mater. Chem. A, 2013, 1(2): 194-198.[44] Wu M, Wang Y, Lin X, et al. Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys., 2011, 13(43): 19298-19301.[45] Jiang Q, Li J, Gao X. Highly ordered TiN nanotube arrays as counter electrode of dye-sensitized solar cells. Chem. Commun., 2009, 45(44): 6720-6722.[46] Zhang X, Chen X, Dong S, et al. Hierarchical micro/nano structured titanium nitride spheres as high performance counter electrode for a dye-sensitized solar cell. J. Mater. Chem., 2012, 22(1): 6067-6071.[47] Jiang Q, Li G, Liu S, et al. Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells. J. Phys. Chem. C, 2010, 114(31): 13397-13401.[48] Li G, Song J, Pan G, et al. Highly Pt-like electrocatalytic activity of transition metal nitride foe dye-sensitized solar cells. Energy Environ. Sci., 2011, 4(5): 1680-1683.[49] Wu M, Zhang Q, Xiao J, et al. Two flexible counter electrode based on molybdenum and tungsten nitrides for dye-sensitized solar cells. J. Mater. Chem., 2011, 21(29): 10761-10766.[50] Wu M, Lin X, Guo W, et al. Great improvement of catalytic activity of the oxide counter electrode fabricating in N2 atmosphere for dye-sensitized solar cells. Chem. Commun., 2013, 49(11): 1058-1060.[51] Yun S, Wang L, Guo W, et al. Non-Pt counter electrode catalysts using tantalum oxide for low-cost dye-sensitized solar cells. Electrochem. Commun., 2012, 24(1): 69-73.[52] Wu M, Lin X, Hagfeldt A, et al. A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem. Commun., 2011, 47(15): 4535-4537.[53] Lin X, Wu M, Wang Y, et al. Novel counter electrode catalyst of niobium oxide supersede Pt for dye-sensitized solar cells. Chem. Commun., 2011, 47(41): 11489-11491.[54] Wu M, Lin X, Hagfeldt A, et al. Low cost molybdenum carbide and tungsten carbide counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed., 2011, 50(15): 3520-3524.[55] Jang J, Ham D, Ramasamy E, et al. Platinum-free tungsten carbide as effective counter electrode for dye-sensitized solar cells. Chem. Commun., 2010, 46(45): 8600-8602.[56] Ko A, Oh J, Lee Y, et al. Characterizations of tungsten carbide as non-Pt counter electrode in dye-sensitized solar cells. Mater. Lett., 2011, 65(14): 2220-2223.[57] Krawiec P, De Colar P L, Glaser R, et al. Oxide foams for the synthesis of high-surface-area vanadium nitride catalysts. Adv. Mater., 2006, 18(4): 505-508.[58] Bennett L H, Cuthill J R, McAlister A J, et al. Electronic and catalytic properties of tungsten carbide. Science, 1975, 187(4179): 858-859.[59] Sun Y, Wu Q, Shi G. Graphene based now energy materials. Energy Environ. Sci., 2011, 4(4): 1113-1132.[60] Pang S, Hernandez Y, Feng X, et al. Graphene as transparent electrode materials of organic electronics. Adv. Mater., 2011, 23(25): 2779-2795.[61] Jiang L, Lu X. Graphene application in solar cells. J. Inorganic Mater., 2012: 27(11): 1129-1137.[62] Kavan L, Yum J, Gr?tzel M, et al. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano, 2011, 5(1): 165-172.[63] Kavan L, Yum J, Gr?tzel M, et al. Graphene nanoplatelets cathode for Co(III)/II mediated dye-sensitized solar cells. ACS Nano, 2011, 5(11): 9171-9178.[64] Jang S, Kim Y, Kim D, et al. Electrodynamically sprayed thin film of aqueous dispersible graphene nanosheets: highly efficient cathode for dye-sensitized solar cells. ACS Appl. Mater. Interface. 2012, 4(7): 3500-3507.[65] Choi H, Kim H, Hwang S, et al. Graphene counter electrode for dye-sensitized solar cells by electrophoretic deposition. J. Mater. Chem., 2011, 21(21): 7548-7551.[66] Roy-Mayhew J D, Bozym D J, Punckt C, et al. Functionalized graphene as catalytic counter electrode in dye-sensitized solar cells. ACS Nano, 2010, 4(10): 6203-6211.[67] Zhang H, Neo C, Mei X, et al. Reduced oxide graphene film fabricated by gel coating and its application as Pt-free counter electrode of highly efficient iodide/triodide dye-sensitized solar cells. J. Mater. Chem., 2012, 22(29): 14465-14474.[68] Xu Y, Bai H, Li G, et al. Flexible graphene film via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc., 2008, 130(18): 5856-5857.[69] Zhang D, Li X, Li H, et al. Graphene based counter electrode for dye-sensitized solar cells. Carbon, 2011, 49(15): 5382-5388.[70] Duo Y, Li G, Song J, et al. Nickel phosphide-embedded graphene as counter electrode of dye-sensitized solar cells. Phys. Chem. Chem. Phys., 2012, 14(4): 1339-1342.[71] Das S, Sudhagar P, Nagarajan S, et al. Synthesis of graphene-CoS electrocatalytic electrodes for dye-sensitized solar cells. Carbon, 2012, 50(13): 4815-4821.[72] Yue G, Lin J, Tai S, et al. A catalytic composite film MoS2/graphene flakes as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta, 2012, 85(1): 162-168.[73] Liu C, Tai S, Chou S, et al. Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem., 2012, 22(39): 21057-21064.[74] Umeyama T, Imahori H. Carbon nanotube-modified electrodes for solar energy conversion. Energy Environ. Sci., 2008, 1(1): 120-133.[75] Ahmad K, Pan W. Dramatic effect of multiwalled carbon nanotube on the electrical properties of alumina ceramic nanocomposites. Compos. Sci. Technol., 2009, 69(7/8): 1016-1021.[76] Lee W, Ramasamy E, Lee D, et al. Efficient dye-sensitized solar cell with catalytic multiwalled carbon nanotube counter electrode. ACS Appl. Mater. Interface, 2009, 1(6): 1145-1149.[77] Seo S, Kim S, Koo B, et al. Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cell with multiwalled carbon nanotube catalyst. Langmuir, 2010, 26(12): 10341-10346.[78] Cho H, Kim H, Hwang S, et al. Dye-sensitized solar cells using graphene-based carbon nanocomposite as counter electrode. Sol. Energy Mater. Sol. Cell, 2011, 95(1): 323-325.[79] Trancik J, Barton S, Hone J. Transparent and catalytic carbon nanotube films. Nano Lett., 2008, 8(4): 982-987.[80] Ramasamy E, Lee W, Lee D, et al. Spray coated multi-walled carbon nanotube counter electrode for triiodide reduction in dye-sensitized solar cells. Electrochem. Commun., 2008, 10(7): 1087-1089.[81] Suzuki K, Yamaguchi M, Kumagai M, et al. Application carbon nanotubes to counter electrode of dye-sensitized solar cells. Chem. Lett., 2003, 32(1): 28-29.[82] Tai S, Liu C, Chou S, et al. Few-layer MoS2 nanosheets coated on multiwalled carbon nanotubes as low-cost highly electrocatalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem., 2012, 22(47): 24753-24759.[83] Song J, Li G, Xiong F, et al. Synergistic effect of molybdenum nitride and carbon nanotube on electrocatalysis for dye-sensitized solar cells. J. Mater. Chem., 2012, 22(38): 20580-20585.[84] Li J, Wang F, Jiang Q, et al. Carbon nanotube with titanium nitride as a low-cost counter electrode materials for dye-sensitized solar cells. Angew. Chem. Int. Ed., 2010, 49(21): 3653-3656.[85] Yue G, Wu J, Lin J, et al. A counter electrode of multiwalled carbon nanotube Carbon decorated with tungsten sulfide used in dye-sensitized solar cells. Carbon, 2013, 55(1): 1-9.[86] Lin J, Liao J, Hung T. A composite counter electrode of CoS/MWCNT with highly electrocatalytic activity for dye-sensitized solar cells. Electrochem. Commun., 2011, 13(9): 977-980.[87] Xiao Y, Wu J, Lin J, et al. Pulse electrodeposition of CoS on the MWCNT/Ti as a high performance counter electrode for the Pt-free dye-sensitized solar cells. J. Mater. Chem. A, 2013, 1(4): 1289-1295.[88] Ryoo R, Joo S, Kruk M, et al. Ordered mesoporous carbon. Adv. Mater., 2001, 13(9): 677-681.[89] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv. Mater., 2006, 18(16): 2073-2094.[90] Candelaria S, Shao Y, Zhou W, et al. Nanostrucutred carbon for energy storage and conversion. Nano Energy, 2012, 1(2): 195-220.[91] Ramasamy E, Chun J, Lee J. Soft-template synthesized ordered mesoporous carbon counter electrode for dye-sensitized solar cells. Carbon, 2010, 48(15): 4563-4565.[92] Fang B, Fan S, Kim J, et al. Incorporation hierarchical nanostructured carbon counter electrode into metal-free organic dye-sensitized solar cell. Langmuir, 2010, 26(13): 11238-11243.[93] Wang G, Xing W, Zhuo S. Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J. Power Source, 2009, 194(1): 568-573.[94] Ramasamy E, Lee J. Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chem. Commun., 2010, 46(12): 2136-2138.[95] Srinivasu P, Islam A, Singh S O, et al. Highly efficient nanoporous graphitic carbon with tunable texture properties for dye-sensitized solar cells. J. Mater. Chem., 2012, 22(39): 20866-20869.[96] Wu M, Bai J, Wang Y, et al. Highly efficient phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells. J. Mater. Chem., 2012, 22(22): 11121-11127.[97] Wu M, Lin X, Hagfeldt A, et al. Low-cost Molybdenum carbide and tungsten carbide counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed., 2011, 50(13): 3520-3524.[98] Wu M, Lin X, Wang L, et al. In-situ synthesized economical tungsten oxide imbedded in mesoporous carbon for dye-sensitized solar cells as counter electrode catalyst. J. Phys. Chem. C, 2011, 115(45): 22598-22602.[99] Wu M, Lin X, Wang Y, et al. Economical Pt-free catalysts for counter electrode of dye-sensitized solar cells. J. Am. Chem. Soc., 2012, 134(7): 3419-3428. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||