Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (8): 795-803.DOI: 10.3724/SP.J.1077.2013.12758
• Review • Next Articles
YANG Guo-Jing1, LIN Mian1, ZHANG Lei1, GOU Zhong-Ru2
Received:
2012-12-15
Revised:
2013-01-31
Published:
2013-08-20
Online:
2013-07-15
Supported by:
National Natural Science Foundation of China (81271956); Science and Technology Department of Zhejiang Province Foundation (2011C33049); Health Bureau of Zhejiang Province Foundation (2010SSA005); Wenzhou Science and Technology Bureau Foundation (H20100076, Y20110026)
CLC Number:
YANG Guo-Jing, LIN Mian, ZHANG Lei, GOU Zhong-Ru. Progress of Calcium Sulfate and Inorganic Composites for Bone Defect Repair[J]. Journal of Inorganic Materials, 2013, 28(8): 795-803.
Add to citation manager EndNote|Ris|BibTeX
[1] Calori G M, Mazza E, Colombo M, et al. The use of bone-graft substitutes in large bone defects: any specific needs? Injury, 2011, 42(S2): S56–63. [2] Resano M, García-Ruiz E, Alloza R, et al. Laser ablation-inductively coupled plasma mass spectrometry for the characterization of pigments in prehistoric rock art. Anal. Chem., 2007, 79(23): 8947–8955. [3] Moore W R, Graves S E, Bain G I. Synthetic bone graft substitutes. Anz. J. Surg., 2001, 71(6): 354–361.[4] Peltier L F, Bickel E Y, Lillo R, et al. The use of plaster of Paris to fill defects in bone. Ann. Surg., 1957. 146(1): 61–69. [5] Peltier L F. The use of plaster of Paris to fill defects in bone. Clin. Orthop., 1961, 21: 1–31. [6] Guarnieri R, Aldini NN, Pecora G, et al. Medial-grade calcium sulfate hemihydrate (surgiplaster) in healing of a human extraction socket--histologic observation at 3 months: a case report. Int. J. Oral. Maxillofac. Implants, 2005, 20(4): 636– 641.[7] Hak D J. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J. Am. Acad. Orthop. Surg., 2007, 15(4): 525–536. [8] Thomas M V, Puleo D. Calcium sulfate: properties and clinical applications. J. Biomed. Mater. Res. Part B: Appl. Biomater., 2009, 88B(3): 597–610. [9] Pedersen B F, Semmingsen D. Neutron diffraction refinement of the structure of gypsum, CaSO4?2H2O. Acta Crystallogr., Sect. B: Struct. Sci., 1982, 38(4): 1074–1077. [10] Schofield P F, Knight K S, Stretton I C. Thermal expansion of gypsum investigated by neutron powder diffraction. Am. Mineral., 1996, 81(7/8): 847–851. [11] de la Torre ? G, López-Olmo M-G, ?lvarez-Rua C, et al. Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses. Powder Diffr., 2004, 19(3): 240–246. [12] Gallitelli P. Calcium sulfate hemihydrate and soluble anhydrite. Period. Mineral., 1933, 4: 1–42. [13] Bezou C, Nonat A, Mutin J-C, et al. Investigation of the crystal structure of γ-CaSO4, CaSO4·0.5H2O, and CaSO4·0.6H2O by powder diffraction methods. J. Solid State Chem., 1995, 117(1): 165–176. [14] Abriel W, Nesper R. Determination of the crystal structure of calcium sulfate hemihydrate by X-ray diffraction and potential-profile calculations. Z. Kristallogr., 1993, 205(1): 99–113.[15] Fl?rke O W. Crystallographic and X-ray study in the system CaSO4-CaSO4-2H2O. Neues Jahrb. Mineral. Monatsh., 1952, 84: 189–240. [16] Lager G A, Armbruster T, Rotella F J, et al. A crystallographic study of the low-temperature dehydration products of gypsum, CaSO4?2H2O: hemihydrate CaSO4?0.5H2O, and γ-CaSO4. Am. Mineral., 1984, 69(9/10): 910–919. [17] Kirfel A, Will G. Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Crystallogr., Sect. B: Struct. Sci., 1980, 36(12): 2881–2890. [18] Ling Y, Demopoulos G P. Preparation of α-calcium sulfate hemihydrate by reaction of sulfuric acid with lime. Ind. Eng. Chem. Res., 2005, 44 (4): 715–724. [19] Yang D S. France National Scciety of Plasters Industries. Plaster: Physics-Chemistry and Fabrication-Apllication. Beijing: China Architecture-Building Press, 1987. [20] Christofferson J, Christifferson M R. The kinetics of calcium sulfate dihydration in water. J. Cryst. Growth., 1976, 35(1): 79– 88. [21] Dumazer G, Narayan V, Smith A, et al. Modeling gypsum crystallization on a submicrometric scale. J. Phys. Chem. C, 2009, 113(4): 1189–1195.[22] Saha A, Lee J, Pancera S M, et al. New Insights into the transformation of calcium sulfate hemihydrate to gypsum using time-resolved cryogenic transmission electron microscopy. Langmuir, 2012, 28(30): 11182–11187.[23] Finot E, Lesniewska E, Mutin J C, et al. Investigations of surface forces between gypsum microcrystals in air using atomic force microscopy. Langmuir, 2000, 16(9): 4237–4244.[24] Jaffel H, Korb J-P, Ndobo-Epoy J-P, et al. Probing micro-structure evolution during the hardening of gypsum by proton NMR relaxometry. J. Phys. Chem. B, 2006, 110(14): 7385– 7391. [25] Jaffel H, Korb J-P, Ndobo-Epoy J-P, et al. Multi-scale approach continuously relating the microstructure and the macroscopic mechanical properties of plaster pastes during their settings. J. Phys. Chem. B, 2006, 110 (37): 18401–18407. [26] Annie Lemarchand, Florent Boudoire, Elodie Boucard, et al. Plaster hydration at different plaster-to-water ratios: acoustic emission and 3-dimensional submicrometric simulations. J. Phys. Chem. C, 2012, 116(7): 4671–4678.[27] Li Z, Demopoulos G P. Solubility of CaSO4 phases in aqueous HCl + CaCl2 solutions from 283 K to 353 K. J. Chem. Eng. Data, 2005, 50(6): 1971–1982. [28] Fisher RD, Mbogoro MM, Snowden M E, et al. Dissolution kinetics of polycrystalline calcium sulfate-based materials: influence of chemical modification. ACS Appl. Mater. Interfaces, 2011, 3(9): 3528–3537. [29] Mbogoro M M, Snowden M E, Edwards M A, et al. Intrinsic kinetics of gypsum and calcium sulfate anhydrite dissolution: surface selective studies under hydrodynamic control and the effect of additives. J. Phys. Chem. C, 2011, 115(20): 10147– 10154. [30] Klepetsanis P G, Dalas E, Koutsoukos P G. Role of temperature in the spontaneous precipitation of calcium sulfate dihydrate. Langmuir, 1999, 15(4): 1534–1540. [31] Christensen A N, Olesen M, Cerenius Y, et al. Formation and transformation of five different phases in the CaSO4?H2O system: crystal structure of the subhydrate β-CaSO4·0.5H2O and soluble anhydrite CaSO4. Chem. Mater., 2008, 20(6): 2124 –2132. [32] Akyol E, O?ner M, Barouda E, et al. Systematic structural determinants of the effects of tetraphosphonates on gypsum crystallization. Cryst. Growth Des., 2009, 9(12): 5145 –5154. [33] Massaro F R, Rubbo M, Aquilano D. Theoretical equilibrium morphology of gypsum (CaSO4·2H2O). 1. A syncretic strategy to calculate the morphology of crystals. Cryst. Growth Des., 2010, 10(7): 2870–2878. [34] Massaro F R, Rubbo M, Aquilano D. Theoretical equilibrium morphology of gypsum (CaSO4·2H2O). 2. The stepped faces of the main [001] zone. Cryst. Growth Des., 2011, 11(5): 1607– 1614. [35] Rubbo M, Bruno M, Massaro F R, et al. The five twin laws of gypsum (CaSO4·2H2O): A theoretical comparison of the interfaces of the penetration twins. Cryst. Growth Des., 2012, 12(6): 3018–3024. [36] Rubbo M, Bruno M, Massaro F R, et al. The five twin laws of gypsum (CaSO4·2H2O): a theoretical comparison of the interfaces of the contact twins. Cryst. Growth Des., 2012, 12(1): 264–270.[37] Ling Y, Demopoulos G P. Preparation of α-Calcium sulfate hemihydrate by reaction of sulfuric acid with lime. Ind. Eng. Chem. Res., 2005, 44 (4): 715–724. [38] 彭红霞. 常压盐溶液法-半水脱硫石膏的制备及晶形调控研究. 重庆: 重庆大学硕士论文. 2010.04. [39] Guan B, Jiang G, Fu H, et al. Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non-electrolyte glycerol–water solution under mild conditions. Ind. Eng Chem Res., 2011, 50(23): 13561–13567. [40] Guan B, Ma X, Wu Z, et al. Crystallization routes and metastability of r-calcium sulfate hemihydrate in potassium chloride solutions under atmospheric pressure. J. Chem. Eng. Data, 2009, 54(9): 719–725. [41] Fu H, Guan B, Jiang G, et al. Effect of supersaturation on competitive nucleation of CaSO4 phases in a concentrated CaCl2 solution. Cryst Growth Des, 2012, 12(3): 1388– 1394. [42] Guan B, Yang L, Wu Z. Effect of Mg2+ ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions. Ind. Eng. Chem. Res., 2010, 49(12): 5569–5574.[43] Kong B, Guan B, Yates M Z. Control of α-calcium sulfate hemihydrate morphology using reverse microemulsions. Langmuir, 2012, 28(40): 14137–14142. [44] Woo K M, Yu B, Jung H M, et al. Comparative evaluation of different crystal-structured calcium sulfate as bone-filling materials. J. Biomed. Mater. Res. B. Appl. Biomater., 2009, 91B(2): 545–554.[45] Rees G D, Evans G R, Hammond S J, et al. Formation and morphology of calcium sulfate nanoparticles and nanowires in water- in-oil microemulsions. Langmuir, 1999, 15(6): 1993– 2002. [46] Yang L X, Meng Y F, Yin P, et al. Shape control synthesis of low-dimensional calcium sulfate. Bull. Mater. Sci., 2011, 34(2): 233–237. [47] Song X, Sun S, Fan W, et al. Preparation of different morphologies of calcium sulfate in organic media. J. Mater. Chem., 2003, 13(7): 1817–1821.[48] Chen Y, Wu Q, Ding Y. Stepwise assembly of nanoparticles, -tubes, -rods, and -wires in reverse micelle systems. Eur. J. Inorg. Chem., 2007, 2007(31): 4906–4910.[49] Park Y B, Mohan K, Al-Sanousi A, et al. Synthesis and characterization of nanocrystalline calcium sulfate for use in osseous regeneration. Biomed. Mater., 2011, 6(5): 055007.[50] Calhoun N R, Greene G W, Blackledge G T. Plaster: a bone substitute in the mandible of dogs. J. Dent. Res., 1965, 44(5): 940–946. [51] Al Ruhaimi K A. Effect of adding resorbable calcium sulfate to grafting materials on early bone regeneration in osseous defects in rabbits. Int. J. Oral Max. Impl., 2000, 15(6): 859–866.[52] Walsh W, Morberg P, Yu Y, et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin. Orthop. Relat. Res., 2003, 406(1): 228–235. [53] Yu X W, Xie X H, Yu Z F, et al. Augmentation of screw fixation with injectable calcium sulfate bone cement in ovariectomized rats. J. Biomed. Mater. Res. Part B: Appl. Biomater., 2009, 89(1): 36–44. [54] Liu D, Lei W, Wu Z, et al. Augmentation of pedicle screw stability with calcium sulfate cement in osteoporotic sheep: biomechanical and screw-bone interfacial evaluation. J. Spinal Disord. Tech., 2011, 24 (4): 235–241. [55] Caba?as M V, Rodríguez-Lorenzo L M, Vallet-Regí M. Setting behavior and in vitro bioactivity of hydroxyapatite/calcium sulfate cements. Chem. Mater., 2002, 14(8): 3550–3555. [56] Lei D, Wardlaw D, Hukins D. Mechanical properties of calcium sulphate/hydroxyapatite cement. Biomed. Mater. Eng., 2006, 16(6): 423–428. [57] Chen Z, Liu H, Cui F Z. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regular self-setting properties. J. Biomed. Mater. Res. A, 2011, 99A(4): 554–563.[58] Nilsson M, Wang J S, Wielanek L, et al. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute. J. Bone Joint Surg. Br., 2004, 86B(1): 120–125.[59] Rauschmann M, Vogl T, Verheyden A, et al. Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (spine support): in vertebral compression fractures due to osteoporosis. Eur. Spine. J., 2010, 19(6): 887– 892. [60] Rauschmann M A, Wichelhaus T A, Stirnal V, et al. Nano- crystalline hydroxyapatite and calcium sulphate as degradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials, 2005, 26(15): 2677–2684. [61] Brown W, Chow L. A new calcium phosphate setting cement. J. Dent. Res., 1983, 62(672): 384–390. [62] Bohner M. New hydraulic cements based on α-tricalcium phosphate– calcium sulfate dihydrate mixtures. Biomaterials, 2004, 25(4): 741–749. [63] Guo H, Wei J, Liu C. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction. Biomed. Mater., 2006, 1(4): 193–197.[64] Pinto A J, Carneiro J, Katsikopoulos D, et al. The link between brushite and gypsum: miscibility, dehydration, and crystallo- chemical behavior in the CaHPO4?2H2O–CaSO4?2H2O. Cryst. Growth Des., 2012, 12(1): 445–455. [65] Urban R M, Turner T M, Hall D J, et al. Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clin. Orthop. Relat. Res., 2007, 459: 110–117.[66] Yang H L, Zhu X S, Chen L, et al. Bone healing response to a synthetic calcium sulfate/β-tricalcium phosphate graft material in a sheep vertebral body defect model. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B(7): 1911–1921. [67] Liu S J. Applications of biomedical calcium phosphate/calcium sulfate composites in vertebroplasty. Chin. J. Med. Guide, 2011, 13(8): 1433–1434. [68] Hench L L, Splinter R J, Allen W, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res., 1971, 5(6): 117–141. [69] Camargo P M, Lekovic V, Weinlaender M, et al. Influence of bioactive glass on changes in alveolar process dimensions after exodontia. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2000, 90(5): 581–586. [70] Melo L G N, Nagata M J H, Bosco A F, et al. Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. Clin. Oral. Implants. Res., 2005, 16(6): 683–691.[71] Furlaneto F A C, Nagata M J H, Fucini S E, et al. Bone healing in critical-size defects treated with bioactive glass/calcium sulfate: a histologic and histometric study in rat calvaria. Clin. Oral. Implants. Res., 2007, 18(3): 311–318. [72] Lee S J, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J. Endod., 1993, 19(11): 541–544. [73] Wu C T, Chang J, Zreiqat H. Engineered Ca-Si Based Ceramics for Skeletal Tissue Reconstruction. Hussain N S, Santos J D. (editor), Biomaterials for Bone Regenerative Medicine. Trans. Tech. Publishers, Switzerland, 2010: 121–150. [74] Shie M Y, Ding S J, Chang H C. The role of silicon in osteoblast- like cell proliferation and apoptosis. Acta Biomater., 2011, 7(6): 2604–2614. [75] Huang Z G, Chang J, Huang X H. Self-setting properties and in vitro bioactivity of Ca2SiO4/CaSO4·1/2H2O composite bone cement. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 87B(2): 387–394.[76] Huang Z G, Chang J. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. Acta Biomater., 2007, 3(6): 952–960.[77] Bell W H. Resorption characteristics of bone and bone substitutes. Oral Surg. Oral Med. Oral Pathol., 1964, 17(5): 650–657. [78] Du C, Wang Y J. Progress in biomineralization study of bone and enamal and biomimetic synthesis of calcium phosphate. J. Inorg. Mater., 2009, 24(5): 882–888.[79] Geesink R G T, De Groot K, Klein C. Bonding of bone to apatite- coated implants. J. Bone Joint Surg., 1988, 70(1): 17–22.[80] Lu J, Descamps M, Dejou J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res., 2002, 63(4): 408–412. [81] Yang S B, Wang J, Liu C. Research on calcium phosphate cement bone adhesive. J. Inorg. Mater., 2013, 28(1): 85–90. [82] Hench L L, Wilson J. Surface-active biomaterials. Science, 1984, 226(4675): 630–633. [83] Hench L L, Thompson I. Twenty-first century challenges for biomaterials. J. Royal Soc. Interf., 2010, 7(Suppl 4): S379– S391. [84] Wu C T, Chang J. Silicate bioceramics for bone tissue regeneration. J. Inorg. Mater., 2013, 28(1): 29–39.[85] Xu S, Lin K, Wang Z, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials, 2008, 29(17): 2588–2596.[86] Liu, Q, Chen L, Yin S, et al. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials, 2008, 29(36): 4792–4799. [87] Xia L, Zhang Z, Chen L, et al. Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics. Eur. Cell Mater., 2011, 22: 68–82.[88] Zhai W, Lu J, Chen L, et al. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater., 2012, 8(1): 341–349. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||