Journal of Inorganic Materials
MIAO Pengcheng1, WANG Lijun1, SHEN Ziyi1, HUANG Li1, YUAN Ningyi1, DING Jianning2
Received:
2025-01-25
Revised:
2025-04-02
Contact:
WANG Lijun, lecturer. E-mail: wanglj@cczu.edu.cn; DING Jianning, professor. E-mail: dingjn@yzu.edu.cn
About author:
MIAO Pengcheng (1999–), male, Master candidate. E-mail: 1131263037@qq.com
Supported by:
CLC Number:
MIAO Pengcheng, WANG Lijun, SHEN Ziyi, HUANG Li, YUAN Ningyi, DING Jianning. Solvothermal Synthesis of Micro-spherical Ag2Se and Its Thermoelectric Properties[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250035.
[1] LIU Y, HOU S, WANG X, et al.Passive radiative cooling enables improved performance in wearable thermoelectric generators. Small, 2022, 18(10): 2106875. [2] ZHANG Y, LI S, ZHANG J, et al.Thermoelectrocatalysis: an emerging strategy for converting waste heat into chemical energy. National Science Review, 2024, 11(4): 2207391. [3] CORNETT J, CHEN B, HAIDAR S, et al.Fabrication and characterization of Bi2Te3-based chip-scale thermoelectric energy harvesting devices. Journal of Electronic Materials, 2017, 46: 2844. [4] HONG M, CHEN Z G, YANG L, et al.Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase‐transition temperature and introducing resonant energy doping. Advanced materials, 2018, 30(11): 1705942. [5] CABALLERO‐CALERO O, ARES J R, MARTÍN‐GONZÁLEZ M. Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth. Advanced Sustainable Systems, 2021, 5(11): 2100095. [6] LIU Y, ZAMANIPOUR Z, VASHAEE D.Economical FeSi2-SiGe composites for thermoelectric power generation. IEEE Green Technologies Conference, 2012: 1-5. [7] KUMAR A, KUMAR M, SINGH R P.Study on electronic, magnetic, optical and thermoelectric properties of manganese oxide (MnO): DFT based spin polarized calculations. Optik, 2021, 241: 167064. [8] ZHENG Y, ZHANG Q, SHI C, et al.Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering. Nature Communications, 2024, 15(1): 7650. [9] SOJO GORDILLO J M, MORATA A, SIERRA C D, et al. Recent advances in silicon-based nanostructures for thermoelectric applications. APL Materials, 2023, 11(4): 040702. [10] SCHIERNING G, STOETZEL J, CHAVEZ R, et al.Silicon‐based nanocomposites for thermoelectric application. physica status solidi (a), 2016, 213(3): 497. [11] DING Y, QIU Y, CAI K, et al.High performance n-type Ag2Se film on Nylon membrane for flexible thermoelectric power generator. Nature Communications, 2019, 10(1): 841. [12] DALVEN R, GILL R.Energy gap in -Ag2Se. Physical Review, 1967, 159(3): 645. [13] SINGH S, HIRATA K, BYEON D, et al.Investigation of thermoelectric properties of Ag2SxSe1-x(x= 0.0, 0.2 and 0.4). Journal of Electronic Materials, 2020, 49: 2846. [14] JOOD P, OHTA M.Temperature-dependent structural variation and Cu substitution in thermoelectric silver selenide. ACS Applied Energy Materials, 2020, 3(3): 2160. [15] LI D, ZHANG J, LI J, et al.High thermoelectric performance for an Ag2Se-based material prepared by a wet chemical method. Materials Chemistry Frontiers, 2020, 4(3): 875. [16] KHAN J A, MAITHANI Y, SINGH J.Ag2Se nanorod arrays with ultrahigh room temperature thermoelectric performance and superior mechanical properties. ACS Applied Materials & Interfaces, 2023, 15(29): 35001. [17] CHEN N, SCIMECA M R, PAUL S J, et al.High-performance thermoelectric silver selenide thin films cation exchanged from a copper selenide template. Nanoscale Advances, 2020, 2(1): 368. [18] ZHOU K, CHEN J, ZHENG R, et al.Non-epitaxial pulsed laser deposition of Ag2Se thermoelectric thin films for near-room temperature applications. Ceramics International, 2016, 42(10): 12490. [19] NAN B, LI M, ZHANG Y, et al.Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature. ACS Applied Electronic Materials, 2023, 6(5): 2807. [20] JIN M, LIANG J, QIU P, et al.Investigation on low-temperature thermoelectric properties of Ag2Se polycrystal fabricated by using zone-melting method. The Journal of Physical Chemistry Letters, 2021, 12(34): 8246. [21] CHEN J, SUN Q, BAO D, et al.Hierarchical structures advance thermoelectric properties of porous n-type -Ag2Se. ACS Applied Materials & Interfaces, 2020, 12(46): 51523. [22] HSU K F, LOO S, GUO F, et al.Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818. [23] ZHU T, HU L, ZHAO X, et al.New insights into intrinsic point defects in V2VI3 thermoelectric materials. Advanced Science, 2016, 3(7): 1600004. [24] TOBERER E S, MAY A F, SNYDER G J.Zintl chemistry for designing high efficiency thermoelectric materials. Chemistry of Materials, 2010, 22(3): 624. [25] JIANG G, HE J, ZHU T, et al.High performance Mg2 (Si, Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties. Advanced Functional Materials, 2014, 24(24): 3776. [26] TEE S Y, TAN X Y, WANG X, et al.Aqueous synthesis, doping, and processing of n-type Ag2Se for high thermoelectric performance at near-room-temperature. Inorganic Chemistry, 2022, 61(17): 6451. [27] WANG H, LIU X, ZHOU Z, et al.Constructing n-type Ag2Se/CNTs composites toward synergistically enhanced thermoelectric and mechanical performance. Acta Materialia, 2022, 223: 117502. [28] LIANG J, QIU P, ZHU Y, et al.Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1-xSx system. Research, 2020, 2020: 6591981. [29] GATES B, MAYERS B, WU Y, et al.Synthesis and characterization of crystalline Ag2Se nanowires through a template‐engaged reaction at room temperature. Advanced Functional Materials, 2002, 12(10): 679. [30] DUAN H, LI Y, ZHAO K, et al.Ultra-fast synthesis for Ag2Se and CuAgSe thermoelectric materials. JOM, 2016, 68: 2659. [31] YUE Y, LYU W, LIU W D, et al.Solvothermal synthesis of micro-pillar shaped Ag2Se and its thermoelectric potential. Materials Today Chemistry, 2024, 39: 102183. [32] PALAPORN D, KUROSAKI K, PINITSOONTORN S.Effect of sintering temperature on the thermoelectric properties of Ag2Se fabricated by spark plasma sintering with high compression. Advanced Energy and Sustainability Research, 2023, 4(10): 2300082. [33] IJAZ U, SIYAR M, PARK C.The power of pores: review on porous thermoelectric materials. RSC Sustainability, 2024, 2(4): 852. [34] TIE J, XU G, LI Y, et al.The effect of SPS sintering temperatures on the structure, thermoelectric properties, and scattering mechanism of Cu2Se. Journal of Materials Research and Technology, 2023, 27: 3506. |
[1] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[2] | LI Junsheng, ZENG Liang, LIU Rongjun, WANG Yanfei, WAN Fan, LI Duan. Functional Strontium Tantalum Oxynitride Ceramics: Efficient Synthesis, Densification and Dielectric Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 885-892. |
[3] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[4] | LU Zhiqiang, LIU Keke, LI Qiang, HU Qin, FENG Liping, ZHANG Qingjie, WU Jinsong, SU Xianli, TANG Xinfeng. Donor-like Effect and Thermoelectric Performance in p-Type Bi0.5Sb1.5Te3 Alloy [J]. Journal of Inorganic Materials, 2023, 38(11): 1331-1337. |
[5] | JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(11): 1338-1344. |
[6] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[7] | LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films [J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310. |
[8] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[9] | ZHANG Keyi, ZHENG Qi, WANG Lianjun, JIANG Wan. Preparation and Characterization of Ag2Se-based Ink Used for Inkjet Printing [J]. Journal of Inorganic Materials, 2022, 37(10): 1109-1115. |
[10] | LU Xu, HOU Jichong, ZHANG Qiang, FAN Jianfeng, CHEN Shaoping, WANG Xiaomin. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds [J]. Journal of Inorganic Materials, 2021, 36(8): 835-840. |
[11] | YANG Xiao, SU Xianli, YAN Yonggao, TANG Xinfeng. Structures and Thermoelectric Properties of (GeTe)nBi2Te3 [J]. Journal of Inorganic Materials, 2021, 36(1): 75-80. |
[12] | WAN Peng, LI Mian, HUANG Qing. Molten Salt Assisted Synthesis of Dy3Si2C2 Coated SiC Powders and Sintering Behavior of SiC Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 49-54. |
[13] | ZHAO Zhankui, LI Tao, LU Shuhan, WANG Minggang, ZHANG Jingjing, CHENG Daowen, WU Chen, CHI Yue, WANG Hongli. Magnetic Properties and Resistivity of Soft Magnetic Composites Regulated by SPS Enhanced Interface Reaction Mechanism [J]. Journal of Inorganic Materials, 2020, 35(11): 1223-1226. |
[14] | LI Zhou, XIAO Chong. Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach [J]. Journal of Inorganic Materials, 2019, 34(3): 294-300. |
[15] | WANG Wei, LUO Shi-Jie, XIAN Cong, XIAO Qun, YANG Yang, OU Yun, LIU Yun-Ya, XIE Shu-Hong. Enhanced Thermoelectric Properties of Hydrothermal Synthesized BiCl3/Bi2S3 Composites [J]. Journal of Inorganic Materials, 2019, 34(3): 328-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||