Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (8): 885-892.DOI: 10.15541/jim20230026
Special Issue: 【信息功能】介电、铁电、压电材料(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Junsheng(), ZENG Liang, LIU Rongjun, WANG Yanfei, WAN Fan, LI Duan(
)
Received:
2023-01-16
Revised:
2023-02-09
Published:
2023-08-20
Online:
2023-03-17
Contact:
LI Duan, associate professor. E-mail: duan_li_2016@163.comAbout author:
LI Junsheng (1982-), male, associate professor. E-mail: charlesljs@163.com
Supported by:
CLC Number:
LI Junsheng, ZENG Liang, LIU Rongjun, WANG Yanfei, WAN Fan, LI Duan. Functional Strontium Tantalum Oxynitride Ceramics: Efficient Synthesis, Densification and Dielectric Performance[J]. Journal of Inorganic Materials, 2023, 38(8): 885-892.
Sample | Synthesis temperature /℃ | Heating rate /(℃·min-1) | Composition/% (in atomic) | O/N | |||
---|---|---|---|---|---|---|---|
Sr | Ta | O | N | ||||
STON-1000-10 | 1000 | 10 | 9.19 | 11.05 | 61.51 | 18.25 | 3.37 |
STON-800-100 | 800 | 100 | 14.59 | 7.74 | 57.10 | 20.57 | 2.78 |
STON-900-100 | 900 | 100 | 12.60 | 10.98 | 50.24 | 26.18 | 1.92 |
STON-1000-100 | 1000 | 100 | 11.74 | 11.92 | 47.83 | 28.51 | 1.68 |
STON-1100-100 | 1100 | 100 | 10.63 | 13.02 | 44.86 | 31.49 | 1.42 |
STON-1200-100 | 1200 | 100 | 10.11 | 13.50 | 44.17 | 32.22 | 1.37 |
Table 1 Synthesis conditions (heating strategy) and element content
Sample | Synthesis temperature /℃ | Heating rate /(℃·min-1) | Composition/% (in atomic) | O/N | |||
---|---|---|---|---|---|---|---|
Sr | Ta | O | N | ||||
STON-1000-10 | 1000 | 10 | 9.19 | 11.05 | 61.51 | 18.25 | 3.37 |
STON-800-100 | 800 | 100 | 14.59 | 7.74 | 57.10 | 20.57 | 2.78 |
STON-900-100 | 900 | 100 | 12.60 | 10.98 | 50.24 | 26.18 | 1.92 |
STON-1000-100 | 1000 | 100 | 11.74 | 11.92 | 47.83 | 28.51 | 1.68 |
STON-1100-100 | 1100 | 100 | 10.63 | 13.02 | 44.86 | 31.49 | 1.42 |
STON-1200-100 | 1200 | 100 | 10.11 | 13.50 | 44.17 | 32.22 | 1.37 |
Sample | Heating rate/ (℃·min-1) | Sintering temperature/℃ | Dwell time/min | Density/ (g·cm-3) | Relative density/% | Open porosity/% | (Open porosity/ Total porosity)/% |
---|---|---|---|---|---|---|---|
STON-SPS-1 | 300 | 1100 | 1 | 5.69 | 70.94 | 3.12 | 10.77 |
STON-SPS-2 | 300 | 1200 | 1 | 6.30 | 78.54 | 7.54 | 35.28 |
STON-SPS-3 | 300 | 1250 | 0 | 6.93 | 86.40 | 4.37 | 21.90 |
STON-SPS-4 | 300 | 1250 | 1 | 7.13 | 88.89 | 0.43 | 3.89 |
STON-SPS-5 | 300 | 1250 | 3 | 7.24 | 90.26 | 0.57 | 5.88 |
STON-SPS-6 | 200 | 1300 | 1 | 7.37 | 91.88 | 0.69 | 8.53 |
STON-SPS-7 | 300 | 1300 | 1 | 7.55 | 94.13 | 0.55 | 9.52 |
STON-SPS-8 | 300 | 1400 | 1 | 7.67 | 95.62 | 0.49 | 11.53 |
Table 2 Density and porosity of oxynitride ceramics prepared by different SPS processes (100 MPa)
Sample | Heating rate/ (℃·min-1) | Sintering temperature/℃ | Dwell time/min | Density/ (g·cm-3) | Relative density/% | Open porosity/% | (Open porosity/ Total porosity)/% |
---|---|---|---|---|---|---|---|
STON-SPS-1 | 300 | 1100 | 1 | 5.69 | 70.94 | 3.12 | 10.77 |
STON-SPS-2 | 300 | 1200 | 1 | 6.30 | 78.54 | 7.54 | 35.28 |
STON-SPS-3 | 300 | 1250 | 0 | 6.93 | 86.40 | 4.37 | 21.90 |
STON-SPS-4 | 300 | 1250 | 1 | 7.13 | 88.89 | 0.43 | 3.89 |
STON-SPS-5 | 300 | 1250 | 3 | 7.24 | 90.26 | 0.57 | 5.88 |
STON-SPS-6 | 200 | 1300 | 1 | 7.37 | 91.88 | 0.69 | 8.53 |
STON-SPS-7 | 300 | 1300 | 1 | 7.55 | 94.13 | 0.55 | 9.52 |
STON-SPS-8 | 300 | 1400 | 1 | 7.67 | 95.62 | 0.49 | 11.53 |
[1] | MARCHAND R, PASTUSZAK R, LAURENT Y, et al. Structure cristalline de Nd2AlO3N. Détermination de L Ordre oxygène-azote par diffraction de neutrons. Revue Dechimie Minerale, 1982, 19(6): 684. |
[2] | MARCHAND R, PORS F, LAURENT Y. Préparation et caractérisation de nouveaux oxynitrures à structure perovskite. Revue Internationale des Hautes Températures et des Réfractaires, 1986, 23(1): 11. |
[3] |
ZHANG X, LIU X, YAN J, et al. Preparation and property of high entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 perovskite ceramics. Journal of Inorganic Materials, 2021, 36(4): 379.
DOI URL |
[4] |
LI S, SONG G, ZHANG Y, et al. Preparation and physical property of BTO-based multiferroic Ceramics. Journal of Inorganic Materials, 2022, 37(1): 79.
DOI URL |
[5] |
FUERTES A. Metal oxynitrides as emerging materials with photocatalytic and electronic properties. Materials Horizons, 2015, 2(5): 453.
DOI URL |
[6] | AGUIAR R. Synthesis, Properties and Applications of AB(O,N)3 Oxynitride Perovskites. Augsburg: University of Augsburg PhD Thesis, 2009. |
[7] | LI W. Formability, Synthesis and Properties of Perovskite-type Oxynitrides. Darmstadt: Technische Universität Darmstadt PhD Thesis, 2015. |
[8] |
EBBINGHAUS S G, AGUIAR R, WEIDENKAFF A, et al. Topotactical growth of thick perovskite oxynitride layers by nitridation of single crystalline oxides. Solid State Sciences, 2008, 10(6): 709.
DOI URL |
[9] |
SEO J, NISHIYAMA H, YAMADA T, et al. Visible-light- responsive photoanodes for highly active, stable water oxidation. Angewandte Chemie International Edition, 2018, 57(28): 8396.
DOI URL |
[10] | LI D, ZENG L, LI B, et al. Rapid synthesis of dielectric tantalum- based oxynitrides. Materials and Design, 2020, 187: 108416. |
[11] | KIM Y I, WOODWARD P M, BABA-KISHI K Z, et al. Characterization of the structural, optical, and dielectric properties of oxynitride perovskites AMO2N (A=Sr, Ba, Ca; M=Ta, Nb). Materials Chemistry, 2004, 16(7): 1267. |
[12] |
ZHANG Y R, MASUBUCHI Y, MOTOHASHI T, et al. Hot isostatic press sintering and dielectric properties of SrTaO2N ceramics. Ceramics International, 2013, 39(3): 3377.
DOI URL |
[13] |
CHEN D, HABU D, MASUBUCHI Y, et al. Partial nitrogen loss in SrTaO2N and LaTiO2N oxynitride perovskites. Solid State Sciences, 2016, 54(1): 2.
DOI URL |
[14] |
HOSONO A, MASUBUCHI Y, KIKKAWA S, et al. Sintering behavior of dielectric SrTaO2N under high pressure of nitrogen. Ceramics International, 2017, 43(2): 2737.
DOI URL |
[15] |
RACHEL A, EBBINGHAUS S G, GÜNGERICH M, et al. Tantalum and niobium perovskite oxynitrides: synthesis and analysis of the thermal behaviour. Thermochim Acta, 2006, 438(1): 134.
DOI URL |
[16] |
CLARKE S J, HARDSTONE K A, MICHIE C W, et al. Rosseinsky. High-temperature synthesis and structures of perovskite and n=1 Ruddlesden-popper tantalum oxynitrides. Chemistry of Materials, 2002, 14(6): 2664.
DOI URL |
[17] |
SUN S K, MOTOHASHI T, MASUBUCHI Y, et al. Direct synthesis of SrTaO2N from SrCO3/Ta3N5 involving CO evolution. Journal of the European Ceramic Society, 2014, 34(16): 4451.
DOI URL |
[18] | LI D, ZHANG C R, LI B, et al. Research progress in preparation of nitride ceramic materials by urea process. Aerospace Material Technology, 2011, 41(5): 1. |
[19] |
WANG M H, ZHONG H B, FAN Y C, et al. Spark plasma sintering of bioactive Ca2MgSi2O7 Ceramics. Journal of Inorganic Materials, 2017, 32(8): 825.
DOI URL |
[20] |
LI D, LI W, FASEL C, et al. Sinterability of the oxynitride LaTiO2N with perovskite-type structure. Journal of Alloys and Compounds, 2014, 586: 567.
DOI URL |
[21] | LI D, MORAES E G, GUO P, et al. Rapid sintering of silicon nitride foams decorated with one-dimensional nanostructures by intense thermal radiation. Science and Technology of Advanced Materials, 2014, 15(4): 045003. |
[22] |
LI D, SHEN Z. Rapid sintering of ceramics with gradient porous structure by asymmetric thermal radiation. Journal of the American Ceramic Society, 2015, 98(12): 3631.
DOI URL |
[23] |
HOSONO A, SUN S K, MASUBUCHI Y, et al. Additive sintering and post-ammonolysis of dielectric BaTaO2N oxynitride perovskite. Journal of the European Ceramic Society, 2016, 36(14): 3341.
DOI URL |
[24] |
MASUBUCHI Y, KAWAMURA F, TANIGUCHI T, et al. High pressure densi-fication and dielectric properties of perovskite-type oxynitride SrTaO2N. Journal of the European Ceramic Society, 2015, 35(4): 1191.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[3] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[4] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[5] | LÜ Xinyi, XIANG Hengyang, ZENG Haibo. Long-range Ordered Films Boost Efficient Perovskite Quantum Dot Light-emitting Devices [J]. Journal of Inorganic Materials, 2025, 40(1): 111-112. |
[6] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[7] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[8] | LIU Yan, QIN Xianpeng, GAN Lin, ZHOU Guohong, ZHANG Tianjin, WANG Shiwei, CHEN Hetuo. Preparation of Sub-micron Spherical Y2O3 Particles and Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 691-696. |
[9] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[10] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[11] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[12] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[13] | LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1397-1403. |
[14] | WANG Yu, XIONG Hao, HUANG Xiaokun, JIANG Linqin, WU Bo, LI Jiansheng, YANG Aijun. Regulation of Low-dose Stannous Iso-octanoate for Two-step Prepared Sn-Pb Alloyed Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1339-1347. |
[15] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||