Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (1): 47-52.DOI: 10.15541/jim20240209
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Na1(), CAO Ruixiao1,2, WEI Jin1, ZHOU Han1,2, XIAO Hongmei1(
)
Received:
2024-04-23
Revised:
2024-07-15
Published:
2025-01-20
Online:
2024-07-16
Contact:
XIAO Hongmei, professor. E-mail: hmxiao@mail.ipc.ac.cnAbout author:
LI Na (1987-), female, PhD. E-mail: lina110@mail.ipc.ac.cn
Supported by:
CLC Number:
LI Na, CAO Ruixiao, WEI Jin, ZHOU Han, XIAO Hongmei. Performance and Influencing Factors of Iron-based Catalyst for Ortho to Para Hydrogen Conversion[J]. Journal of Inorganic Materials, 2025, 40(1): 47-52.
Activation ambience | Activation method | p-H2 content (relative value)/% |
---|---|---|
Vacuuming | 110 ℃ for 8 h | 100 |
Purging H2 | 110 ℃ for 8 h | 102.26 |
Vacuuming | 160 ℃ for 16 h | 104.36 |
Purging H2 | 160 ℃ for 16 h | 104.62 |
Table 1 Effect of activation method on catalytic efficiency
Activation ambience | Activation method | p-H2 content (relative value)/% |
---|---|---|
Vacuuming | 110 ℃ for 8 h | 100 |
Purging H2 | 110 ℃ for 8 h | 102.26 |
Vacuuming | 160 ℃ for 16 h | 104.36 |
Purging H2 | 160 ℃ for 16 h | 104.62 |
Sample | Drying temperature/℃ | Average compressive strength of particle/N | p-H2 content (relative value)/% |
---|---|---|---|
F3-1 | 110 | 3.27 | 100 |
F3-2 | 130 | 3.42 | 89.93 |
F3-3 | 150 | 3.51 | 84.17 |
Table 2 Effect of drying temperature on catalytic efficiency and mechanical strength
Sample | Drying temperature/℃ | Average compressive strength of particle/N | p-H2 content (relative value)/% |
---|---|---|---|
F3-1 | 110 | 3.27 | 100 |
F3-2 | 130 | 3.42 | 89.93 |
F3-3 | 150 | 3.51 | 84.17 |
Sample | Aperture of crushing sieve/mm | Particle size/ µm | p-H2 content (relative value)/% |
---|---|---|---|
F4-1 | 1.2 | 420~841 | 100 |
F4-2 | 1.0 | 297~595 | 103.72 |
F4-3 | 0.8 | 297~595 | 105.34 |
Table 3 Effect of particle size on catalytic efficiency
Sample | Aperture of crushing sieve/mm | Particle size/ µm | p-H2 content (relative value)/% |
---|---|---|---|
F4-1 | 1.2 | 420~841 | 100 |
F4-2 | 1.0 | 297~595 | 103.72 |
F4-3 | 0.8 | 297~595 | 105.34 |
Sample | Concentration ratio of Fe3+:OH- | Average compressive strength of particle/N | p-H2 content (relative value)/% |
---|---|---|---|
F7 | 0.189 | 3.18 | 100 |
F5 | 0.328 | 4.14 | 101.93 |
X14 | 0.646 | 3.99 | 102.00 |
Table 4 Effect of concentration ratio on catalytic efficiency and mechanical strength
Sample | Concentration ratio of Fe3+:OH- | Average compressive strength of particle/N | p-H2 content (relative value)/% |
---|---|---|---|
F7 | 0.189 | 3.18 | 100 |
F5 | 0.328 | 4.14 | 101.93 |
X14 | 0.646 | 3.99 | 102.00 |
Sample | Surface area/(m2·g-1) | Pore radius/nm | Average compressive strength of particle/N | p-H2 content(relative value)/% |
---|---|---|---|---|
FeCo0.05OxOH | 67.315 | 12.85 | 3.30 | 114.79 |
FeCe0.05OxOH | 204.105 | 4.42 | 3.07 | 120.55 |
FeAl0.2OxOH | 238.322 | 2.84 | 4.75 | 122.91 |
FeCo0.05Al0.2OxOH | 242.901 | 2.97 | 3.43 | 124.44 |
FeCe0.05Al0.2OxOH | 243.463 | 2.91 | 3.62 | 124.94 |
Table 5 Effect of doping element on catalytic efficiency and mechanical strength
Sample | Surface area/(m2·g-1) | Pore radius/nm | Average compressive strength of particle/N | p-H2 content(relative value)/% |
---|---|---|---|---|
FeCo0.05OxOH | 67.315 | 12.85 | 3.30 | 114.79 |
FeCe0.05OxOH | 204.105 | 4.42 | 3.07 | 120.55 |
FeAl0.2OxOH | 238.322 | 2.84 | 4.75 | 122.91 |
FeCo0.05Al0.2OxOH | 242.901 | 2.97 | 3.43 | 124.44 |
FeCe0.05Al0.2OxOH | 243.463 | 2.91 | 3.62 | 124.94 |
Sample | Particle size, d90/μm | p-H2 content (relative value)/% | ||
---|---|---|---|---|
400 mL•min-1 | 800 mL•min-1 | 1200 mL•min-1 | ||
Commercial catalyst | 820.5 | 49.29 | 47.29 | 45.19 |
This work (F5) | 712.1 | 49.46 | 48.05 | 46.49 |
Table 6 Comparison of particle size and catalytic efficiency for commercial catalyst and catalyst in this work at different flow rates of H2
Sample | Particle size, d90/μm | p-H2 content (relative value)/% | ||
---|---|---|---|---|
400 mL•min-1 | 800 mL•min-1 | 1200 mL•min-1 | ||
Commercial catalyst | 820.5 | 49.29 | 47.29 | 45.19 |
This work (F5) | 712.1 | 49.46 | 48.05 | 46.49 |
[1] | MUTHUKUMAR P, KUMAR A, AFZAL M, et al. Review on large-scale hydrogen storage systems for better sustainability. International Journal of Hydrogen Energy, 2023, 48(85): 33223. |
[2] | ZHOU H, LI Z, LI M, et al. Study of activation methods for ortho-para hydrogen catalysts in a small isothermal converter based on gas chromatography at LN2 temperature. International Journal of Hydrogen Energy, 2024, 55: 55. |
[3] | RIAZ A, QYYUM M A, HUSSAIN A, et al. Significance of ortho- para hydrogen conversion in the performance of hydrogen liquefaction process. International Journal of Hydrogen Energy, 2023, 48(68): 26568. |
[4] | WAN C, ZHU S, SHI C, et al. Numerical simulation on pressure evolution process of liquid hydrogen storage tank with active cryogenic cooling. International Journal of Refrigeration, 2023, 150: 47. |
[5] | 杨晓阳, 杨昌乐. 正仲氢转化催化剂性能研究. 化学推进剂与高分子材料, 2018, 16(3): 79. |
[6] | 朱楠. 氢正仲转化用铁基催化剂的制备与催化性能研究. 北京: 北京化工大学硕士学位论文, 2019. |
[7] | FUKUTANI K, SUGIMOTO T. Physisorption and ortho-para conversion of molecular hydrogen on solid surfaces. Progress in Surface Science, 2013, 88(4): 279. |
[8] | WIGNER E. Concerning the paramagnetic conversion of para-ortho hydrogen. III. Zeitschrift Fur Physikalische Chemie-Abteilung B-Chemie Der Elementarprozesse Aufbau Der Materie, 1933, 23(1/2): 28. |
[9] | XU H, WANG J, HAN Y, et al. Effect of unpaired electron number elements (Al, Cr, Mn) doping in Fe2O3 on ortho to para hydrogen conversion at 77 K. Journal of Energy Storage, 2023, 74: 109512. |
[10] | DAS T, KWEON S C, NAH I W, et al. Spin conversion of hydrogen using supported iron catalysts at cryogenic temperature. Cryogenics, 2015, 69: 36. |
[11] | XU P, LEI G, XU Y, et al. Study on continuous cooling process coupled with ortho-para hydrogen conversion in plate-fin heat exchanger filled with catalyst. International Journal of Hydrogen Energy, 2022, 47(7): 4690. |
[12] | DONAUBAUER P J, CARDELLA U, DECKER L, et al. Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction. Chemical Engineering & Technology, 2019, 42(3): 669. |
[13] | ZHUZHGOV A V, KRIVORUCHKO O P, ISUPOVA L A, et al. Low- temperature conversion of ortho-hydrogen into liquid para-hydrogen: process and catalysts. Review. Catalysis in Industry, 2018, 10(1): 9. |
[14] | WEITZEL D H, PARK O E. Iron catalyst for production of liquid para-hydrogen. Review of Scientific Instruments, 1956, 27(1): 57. |
[15] | SNADIN A V, CHUKLINA N O, KIRYUTIN A S, et al. Magnetic field dependence of the para-ortho conversion rate of molecular hydrogen in SABRE experiments. Journal of Magnetic Resonance, 2024, 360: 107630. |
[16] | XU H, BI S, XUE M, et al. Amorphous cobalt iron oxide nanoparticles with high magnetization intensity for spin conversion of hydrogen at 77 K. International Journal of Hydrogen Energy, 2023, 48(81): 31643. |
[1] | LIU Wenwen, MIAO Yuxin, ZHANG Yifei, WANG Xinyu, LAN Yuting, ZHAO Zhen. Preparation of MgAl LDH with Various Morphologies and Catalytic Hydrogenation Performance of Pt/LDH Catalysts [J]. Journal of Inorganic Materials, 2021, 36(12): 1283-1289. |
[2] | ZHAO Yupeng,HE Yong,ZHANG Min,SHI Junjie. First-principles Study on the Photocatalytic Hydrogen Production of a Novel Two-dimensional Zr2CO2/InS Heterostructure [J]. Journal of Inorganic Materials, 2020, 35(9): 993-998. |
[3] | LI Ya-Hui, ZHANG Jian-Feng, CAO Hui-Yang, ZHANG Xin, JIANG Wan. PtRu Particles Supported on Two-dimensional Titanium Carbide/Carbon Nanotubes: Preparation and Electrocatalytic Properties [J]. Journal of Inorganic Materials, 2020, 35(1): 79-85. |
[4] | JIANG Hai-Yan, XIA Yun-Sheng, LI Yu-Zhen. Preparation and Visible-light-driven Photocatalytic Performance of Porous Rod-like FeVO4 [J]. Journal of Inorganic Materials, 2018, 33(9): 949-955. |
[5] | LI Hong-Mei, LAN Li, CHEN Shan-Hu, LIU Da-Yu, WANG Wei, CHEN Yao-Qiang. Preparation of CexZr1-xO2 with Combined Composition for Improved Pd-only Three-way Catalyst [J]. Journal of Inorganic Materials, 2018, 33(7): 798-804. |
[6] | LI Jia-Ke, LIU Xin, HUANG LI-Qun, WANG Yan-Xiang. LaFe1-xMgxO3 Ultrafine Powders Synthesized by Solution Combustion and Its Photocatalytic Performances [J]. Journal of Inorganic Materials, 2015, 30(11): 1223-1227. |
[7] | LI Xian-Hua, ZHANG Lei-Gang, WANG Xue-Xue, YU Qing-Bo. Synthesis of Porous g-C3N4 Loaded With Highly Dispersed PANI by Interfacial Polymerization and Its Photocatalytic Performance [J]. Journal of Inorganic Materials, 2015, 30(10): 1018-1024. |
[8] | LI Jia-Ke, LIU Xin . Effects of Fuel on Morphology and Photocatalytic Performance of ZnO Nanorods Synthesized by Solution Combustion Method [J]. Journal of Inorganic Materials, 2013, 28(8): 880-884. |
[9] | WU Yi-Qing, NI Jian-Sen, DU Ya-Nan, HU Peng-Fei, DING Wei-Zhong, GENG Shu-Hua. Preparation of CeO2 Nanopowders by Hydrolysis and Oxidation of Cerium Carbide [J]. Journal of Inorganic Materials, 2012, 27(5): 489-494. |
[10] | LIU Wei-Qiao,SHANG Tong-Ming,LI Gong,WU Fei-Ke,TONG Hui-Juan,SUN Yu-Han. Synthesis and Catalytic Performance of Mesoporous Material by Twostep Crystallization [J]. Journal of Inorganic Materials, 2010, 25(3): 272-278. |
[11] | ZHANG Yi,XU Gang,OU Ping,HAN Gao-Rong. Preparation and Catalytic Property of Single Crystal Multiporous α-Fe2O3 Nanorods [J]. Journal of Inorganic Materials, 2008, 23(3): 459-463. |
[12] | PAN Wei-Ying,CHEN Xiao-Hua,XU Long-Shan. Synthesis and Properties of Cuprous Oxide/Carbon Nanotubes Composite Superfine Spheres [J]. Journal of Inorganic Materials, 2008, 23(2): 403-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||