Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (7): 790-798.DOI: 10.15541/jim20240506
• RESEARCH ARTICLE • Previous Articles Next Articles
YU Yiping1(), XIAO Peng2, ZHAO Changhao3, XU Mengdi1, YAO Lidong1, LI Wei1, WANG Song1(
)
Received:
2024-12-04
Revised:
2025-02-23
Published:
2025-07-20
Online:
2025-02-25
Contact:
WANG Song, professor. E-mail: wangs_0731@163.comAbout author:
YU Yiping (1990-), male, PhD. E-mail: beijingyuyiping@163.com
Supported by:
CLC Number:
YU Yiping, XIAO Peng, ZHAO Changhao, XU Mengdi, YAO Lidong, LI Wei, WANG Song. Ablation Behavior of High-temperature Laminated Ta/Ta0.5Hf0.5C Cermets under High-frequency Plasma Wind Tunnel Test[J]. Journal of Inorganic Materials, 2025, 40(7): 790-798.
Material | Ablation method | Ablation temperature/℃ | Ablation time/s | Linear ablation rate/(mm•s-1) | Mass ablation rate/(g•s-1) | Reference |
---|---|---|---|---|---|---|
C/C composites | Motor ground ignition test | ~3000 | 60 | 0.142 | - | [ |
C/C composites | Arc wind tunnel abltion | ~3000 | 200 | 0.030 | - | [ |
C/C-SiC composites | Oxyacetylene ablation | ~3000 | 60 | 0.096 | 0.024 | [ |
C/C-SiC-Ti3SiC2 composites | Oxyacetylene ablation | ~3000 | 60 | 0.060 | 0.012 | [ |
C/C-Zr0.83Ti0.17C composites | Oxyacetylene ablation | ~3000 | 60 | 0.016 | 0.004 | [ |
Zr0.8Ti0.2C0.74B0.26 coated C/C composites | Oxyacetylene ablation | ~3000 | 60 | 0.001 | 0.008 | [ |
Ta/Ta0.5Hf0.5C cermets | Plasma wind tunnel ablation | ~3000 | 30 | 0.019 | 0.061 | This work |
Table 1 Ablation resistance properties of typical high-temperature materials ablated under temperature of ~3000 ℃[19-23]
Material | Ablation method | Ablation temperature/℃ | Ablation time/s | Linear ablation rate/(mm•s-1) | Mass ablation rate/(g•s-1) | Reference |
---|---|---|---|---|---|---|
C/C composites | Motor ground ignition test | ~3000 | 60 | 0.142 | - | [ |
C/C composites | Arc wind tunnel abltion | ~3000 | 200 | 0.030 | - | [ |
C/C-SiC composites | Oxyacetylene ablation | ~3000 | 60 | 0.096 | 0.024 | [ |
C/C-SiC-Ti3SiC2 composites | Oxyacetylene ablation | ~3000 | 60 | 0.060 | 0.012 | [ |
C/C-Zr0.83Ti0.17C composites | Oxyacetylene ablation | ~3000 | 60 | 0.016 | 0.004 | [ |
Zr0.8Ti0.2C0.74B0.26 coated C/C composites | Oxyacetylene ablation | ~3000 | 60 | 0.001 | 0.008 | [ |
Ta/Ta0.5Hf0.5C cermets | Plasma wind tunnel ablation | ~3000 | 30 | 0.019 | 0.061 | This work |
Fig. 6 Microstructure and EDS analysis of central region of laminated Ta/Ta0.5Hf0.5C cermets after plasma wind tunnel ablation (a) Whole sample; (b, c) Ridge area; (d, e) Groove area. Insets in (c, e) are corresponding EDS analyses of the red dots
Fig. 7 Microstructure of edge region of laminated Ta/Ta0.5Hf0.5C cermets after plasma wind tunnel ablation (a, b) Ridge area and (c, d) groove area parallel to the layered structure; (e, f) Ridge area and (g, h) groove area perpendicular to the layered structure. Insets in (b, c) are corresponding EDS analyses of the red dots
Fig. 8 Cross-sectional microstructure of laminated Ta/Ta0.5Hf0.5C cermets after plasma wind tunnel ablation (a) Overall structure; (b-d) Ablation center; (e-g) Ablation edge
Area | Ta/% | Hf/% | O/% | C/% |
---|---|---|---|---|
Ⅰ | 9.89 | 11.01 | 40.06 | 39.05 |
Ⅱ | 20.62 | 1.64 | 25.10 | 52.64 |
Ⅲ | 4.31 | 3.69 | 31.07 | 60.92 |
Ⅳ | 18.28 | 0 | 34.92 | 46.79 |
Ⅴ | 14.83 | 3.87 | 14.23 | 67.07 |
Ⅵ | 23.93 | 0.08 | 6.11 | 69.88 |
Table 2 Elements contents (in atom) of different areas in the cross section of laminated Ta/Ta0.5Hf0.5C cermets after ablation
Area | Ta/% | Hf/% | O/% | C/% |
---|---|---|---|---|
Ⅰ | 9.89 | 11.01 | 40.06 | 39.05 |
Ⅱ | 20.62 | 1.64 | 25.10 | 52.64 |
Ⅲ | 4.31 | 3.69 | 31.07 | 60.92 |
Ⅳ | 18.28 | 0 | 34.92 | 46.79 |
Ⅴ | 14.83 | 3.87 | 14.23 | 67.07 |
Ⅵ | 23.93 | 0.08 | 6.11 | 69.88 |
Fig. 9 Microstructure of crack generated inside laminated Ta/Ta0.5Hf0.5C cermets after plasma wind tunnel ablation (a) Macroscopic structure of the crack; (b) Crack branching and deflection at the interface; (c) Microcracks at the interface
[1] | ZHANG X H, WANG Y M, CHENG Y, et al. Research progress on ultra-high temperature ceramic composites. Journal of Inorganic Materials, 2024, 39(6): 571. |
[2] |
PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016, 15(8): 804.
DOI PMID |
[3] | XIAO P, ZHU Y L, WANG S, et al. Research progress on the preparation and characterization of ultra refractory TaxHf1-xC solid solution ceramics. Journal of Inorganic Materials, 2021, 36(7): 685. |
[4] | SMITH C J, YU X X, GUO Q Y, et al. Phase, hardness, and deformation slip behavior in mixed HfxTa1-xC. Acta Materialia, 2018, 145: 142. |
[5] | 张健, 蒋进明, 周永刚, 等. TaxHf1-xC(x=0-1)超高温陶瓷材料的研究进展. 稀有金属材料与工程, 2022, 51(2): 752. |
[6] | PAN R Q, CHEN G Q, YU X M, et al. Densification, microstructure and mechanical properties of Ta4HfC5-based ceramics obtained from synthesized nanoscale powder. Journal of the European Ceramic Society, 2021, 41(4): 2247. |
[7] | QIN Y Y, NI D W, CHEN B W, et al. Low-temperature reactive hot-pressing of Ta0.2Hf0.8C-SiC ceramics at 1700 ℃. Journal of the American Ceramic Society, 2023, 106(7): 4390. |
[8] | NI D W, QIN Y Y, DONG S M. Microstructure and mechanical behavior of TaxHf1-xC-SiC fabricated by reactive hot-pressing: effect of Ta : Hf ratio. Journal of the American Ceramic Society, 2024, 107(10): 6974. |
[9] | ZOU X G, NI D W, CHEN B W, et al. Fabrication and mechanical behavior of 2D-Cf/TaxHf1-xC-SiC composites by a low-temperature and highly-efficient route. Journal of Advanced Ceramics, 2023, 12(10): 1961. |
[10] | ZOU X G, NI D W, CHEN B W, et al. Fabrication and properties of Cf/Ta4HfC5-SiC composite via precursor infiltration and pyrolysis. Journal of the American Ceramic Society, 2021, 104(12): 6601. |
[11] | ZHANG B H, WANG Y W, YIN J, et al. Carbon deficiency introduced plasticity of rock-salt-structured transition metal carbides. Journal of Materials Science & Technology, 2023, 164: 205. |
[12] | XIAO P, WANG S, LI W, et al. Novel strong and tough Ta/TaHfC2 composites with multi-scale laminated structure. Journal of the American Ceramic Society, 2022, 105(6): 4291. |
[13] | XIAO P, DAI H L, LI Z J, et al. Composition, microstructure, and mechanical properties evolution behaviors of Ta/TaHfC2 laminated composite between 1873-2673 K International Journal of Refractory Metals and Hard Materials, 2024, 121: 106642. |
[14] | ZHANG J, JIANG J M, SONG Q, et al. Ultra-high temperature ablation property of Ta0.5Hf0.5C ternary ceramic under plasma flame. Ceramics International, 2021, 47(19): 28050. |
[15] | ZHANG B H, YIN J, ZHENG J Q, et al. High temperature ablation behavior of pressureless sintered Ta0.8Hf0.2C-based ultra-high temperature ceramics. Journal of the European Ceramic Society, 2020, 40(4): 1784. |
[16] | VOITOVICH V B, LAVRENKO V A, ADEJEV V M, et al. High-temperature oxidation of tantalum of different purity. Oxidation of Metals, 1995, 43(5): 509. |
[17] | JIANG J M, WANG S, LI W. Preparation and characterization of ultrahigh-temperature ternary ceramics Ta4HfC5. Journal of the American Ceramic Society, 2016, 99(10): 3198. |
[18] | ZHANG J, WANG S, LI W. Consolidation and characterization of highly dense single-phase Ta-Hf-C solid solution ceramics. Journal of the American Ceramic Society, 2019, 102(1): 58. |
[19] | YIN J, ZHANG H B, XIONG X, et al. Ablation performance of carbon/carbon composite throat after a solid rocket motor ground ignition test. Applied Composite Materials, 2012, 19(3): 237. |
[20] | ZHANG W Z, TAN M Y, CHEN D M, et al. Sugar-derived nanocrystalline graphite matrix C/C composites with excellent ablative resistance at 3000 ℃. Advanced Materials, 2024, 36(7): 2309899. |
[21] | YAGHOBIZADEH O, SEDGHI A, BAHARVANDI H R. Effect of Ti3SiC2 on the ablation behavior and mechanism of Cf-C-SiC- Ti3SiC2 composites under oxyacetylene torch at 3000 ℃. Ceramics International, 2019, 45(1): 777. |
[22] | ZENG Y, XIONG X, LI G D, et al. Microstructure and ablation behavior of carbon/carbon composites infiltrated with Zr-Ti. Carbon, 2013, 54: 300. |
[23] | ZENG Y, WANG D N, XIONG X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 ℃. Nature Communications, 2017, 8: 15836. |
[24] | MCCORMACK S J, KRIVEN W. Crystal structure solution for the A6B2O17 (A=Zr, Hf; B=Nb, Ta) superstructure. Acta Crystallographica Section B-Structural Science, Crystal Engineering and Materials, 2019, 75: 227. |
[25] | YANG Y, KAWAZOE Y. Prediction of new ground-state crystal structure of Ta2O5. Physical Review Materials, 2018, 2(3): 034602. |
[26] | ZHANG J, WANG S, LI W, et al. Understanding the oxidation behavior of Ta-Hf-C ternary ceramics at high temperature. Corrosion Science, 2020, 164: 108348. |
[27] | 肖鹏, 杨凯, 余艺平, 等. Ta/Ta0.5Hf0.5C层状复合材料的抗等离子火焰冲击行为及机制. 稀有金属材料与工程, 2024, 53(6): 1677. |
[1] | FAN Qian-Guo, CUI Hong, YAN Lian-Sheng, ZHANG Qiang, MENG Xiang-Li, YANG Xing. Ablation Resistance Properties of Ultra-high Temperature Composites C/C-SiC-ZrB2 by Slurry Impregnation Method [J]. Journal of Inorganic Materials, 2013, 28(9): 1014-1018. |
[2] | YU Qing-Chun, WAN Hong. Ablation Capability of Flake Graphite Reinforced Barium-phenolic Resin Composite under Long Pulse Laser Irradiation [J]. Journal of Inorganic Materials, 2012, 27(2): 157-161. |
[3] | CHEN Bo,ZHANG Li-Tong,CHENG Lai-Fei,LUAN Xin-Gang. Ablation Characteristic of the Pierced C/C Composite Nozzle in a Combustion Gas Generator [J]. Journal of Inorganic Materials, 2008, 23(6): 1159-1164. |
[4] | CHEN Bo,ZHANG Li-Tong,CHENG Lai-Fei,LUAN Xin-Gang. Ablation Characteristic of 3D C/SiC Composite Nozzle in a Small Solid Rocket Motor [J]. Journal of Inorganic Materials, 2008, 23(5): 938-944. |
[5] | YANG Fei-Yu,ZHANG Xing-Hong,HAN Jie-Cai,DU Shan-Yi. Ablation Mechanism of ZrB2-SiC and Csf/ZrB2-SiC Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2008, 23(4): 734-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||