Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (1): 97-103.DOI: 10.15541/jim20240214
Previous Articles Next Articles
WANG Zhixiang1,2,3(), CHEN Ying2,3,4(
), PANG Qingyang2,3, LI Xin2, WANG Genshui1,2,3,4(
)
Received:
2024-04-25
Revised:
2024-05-21
Published:
2025-01-20
Online:
2024-05-31
Contact:
WANG Genshui, professor. E-mail: genshuiwang@mail.sic.ac.cn;About author:
WANG Zhixiang (1999-), male, Master candidate. E-mail: wangzhixiang21@mails.ucas.ac.cn
Supported by:
CLC Number:
WANG Zhixiang, CHEN Ying, PANG Qingyang, LI Xin, WANG Genshui. Sintering Behaviour and Dielectric Properties of MnCO3-doped MgO-based Ceramics[J]. Journal of Inorganic Materials, 2025, 40(1): 97-103.
Fig. 2 Kinetic curves of grain growth in MZCM1.00 ceramics (a) Grain growth index n at different sintering temperatures; (b-e) Activation energy of grain growth with different sintering time
Fig. 4 FESEM images of thermal etched surface morphologies of ceramics with insets showing grain size distribution of ceramics (a) Pure MgO; (b-f) MZCMx (x = 0, 0.25, 0.50, 1.00, 1.50) ceramics
Fig. 6 Dieletric properties of pure MgO and MZCMx (x = 0, 0.25, 0.50, 1.00, 1.50) ceramics (a) Linear fitting for dielectric strength of Weibull distribution; (b) Temperature dependence of the dielectric constant and loss in 1 MHz. Colorful figures are available on website
Sample | τc/(×10-6, ℃-1, -25 ℃) | τc/(×10-6, ℃-1, 85 ℃) | (Q × f)/GHz | τf/(×10-6,℃-1) |
---|---|---|---|---|
Pure MgO | 79.6 | 85.1 | 138240 | -35.62 |
MZCM0 | 63.9 | 74.4 | 124623 | -32.36 |
MZCM0.25 | 28.6 | 34.4 | 130330 | -20.64 |
MZCM0.50 | 20.1 | 46.1 | 156196 | -18.36 |
MZCM1.00 | 4.91 | 20.3 | 216642 | -12.54 |
MZCM1.50 | 16.06 | 78.4 | 123216 | -14.60 |
Table 1 Microwave dielectric properties of pure MgO and MZCMx ceramics
Sample | τc/(×10-6, ℃-1, -25 ℃) | τc/(×10-6, ℃-1, 85 ℃) | (Q × f)/GHz | τf/(×10-6,℃-1) |
---|---|---|---|---|
Pure MgO | 79.6 | 85.1 | 138240 | -35.62 |
MZCM0 | 63.9 | 74.4 | 124623 | -32.36 |
MZCM0.25 | 28.6 | 34.4 | 130330 | -20.64 |
MZCM0.50 | 20.1 | 46.1 | 156196 | -18.36 |
MZCM1.00 | 4.91 | 20.3 | 216642 | -12.54 |
MZCM1.50 | 16.06 | 78.4 | 123216 | -14.60 |
[1] | CAI Z M, FENG P Z, ZHU C Q, et al. Dielectric breakdown behavior of ferroelectric ceramics: the role of pores. J. Eur. Ceram. Soc., 2021, 41(4): 2533. |
[2] | PAN H, LI F, LIU Y, et al. Ultrahigh-energy density leadfree dielectric films via polymorphic nanodomain design. Science, 2019, 365(6453): 578. |
[3] | CHEN K B, ZHOU X D, GAO M. Research progress and application of high power microwave technology. Winged Missile Journal, 2019, 6: 1. |
[4] | CHAI Y Y. Research of the Ku band compact high-power microwave output window. Chengdu: Southwest Jiaotong University, 2016: 1-4. |
[5] | ZHANG X, WANG T, YU Q Q, et al. Research progress of high-power waveguide window. High Power Laser and Particle Beams, 2021, 33: 023001. |
[6] | LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 2015, 523: 576. |
[7] |
KHANCHAITIT P, HAN K, GADINSKI M R, et al. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun., 2013, 4: 2845.
DOI PMID |
[8] | HUANG Y, CHEN Y, LI X, et al. Enhanced dielectric breakdown strength in Ni2O3 modified Al2O3-SiO2-TiO2 based dielectric ceramics. J. Eur. Ceram. Soc., 2018, 38(11): 3861. |
[9] | LIU M, CAO M, ZENG F, et al. Fine-grained silica-coated barium strontium titanate ceramics with high energy storage. Ceram. Inter., 2018, 44(16): 20239. |
[10] | PING W W, LIU W F, LI S T. Enhanced energy storage property in glass-added Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics and the charge relaxation. Ceram. Inter., 2019, 9(45): 11388. |
[11] | ZHANG J, WANG J, GAO D, et al. Enhanced energy storage performances of CaTiO3-based ceramic through A-site Sm3+ doping and A-site vacancy. J. Eur. Ceram. Soc., 2021, 41(1): 352. |
[12] |
YANG L, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 2019, 102: 72.
DOI |
[13] | ROESSLER D M, WALKER W C. Electronic spectrum and ultraviolet optical properties of crystalline MgO. Phys. Rev., 1967, 159: 733. |
[14] | BEAUCHAMP E K. Effect of microstructure on pulse electrical strength of MgO. J. Amer. Ceram. Soc., 1971, 54: 484. |
[15] | GÓMEZ-RODRÍGUEZ C, GARCÍA-QUIÑONEZ L V, AGUILAR-MARTÍNEZ J A, et al. MgO-ZrO2 ceramic composites for silicomanganese production. Materials, 2022, 15: 2421. |
[16] | ŚNIEŻEK E, SZCZERBAA J, STOCH P, et al. Structural properties of MgO-ZrO2 ceramics obtained by conventional sintering, arc melting and field assisted sintering technique. Mater. Desi., 2016, 99: 412. |
[17] | WANG X, LIANG P, CHAO X, et al. Dielectric properties and impedance spectroscopy of MnCO3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Am. Ceram. Soc., 2015, 98(5): 1506. |
[18] | CEN Z, DONG Z, XU Z, et al. Improving fatigue properties, temperature stability and piezoelectric properties of KNN-based ceramics via sintering in reducing atmosphere. J. Eur. Ceram. Soc., 2021, 41(8): 4462. |
[19] | WANG T, LI Z. Effects of MnO2 addition on the structure and electrical properties of PIN-PZN-PT ceramics with MPB composition. J. Mater. Sci.: Mater. Elect., 2020, 31(24): 22740. |
[20] | HUANG Q Z, LU G M, SUN Z, et al. Effect of TiO2 on sintering and grain growth kinetics of MgO from MgCl2·6H2O. Mater. Trans. B, 2013, 44(2): 344. |
[21] | COOPER M W D, STANEK C R, ANDERSSON D A. The role of dopant charge state on defect chemistry and grain growth of doped UO2. Act. Mater., 2018, 150: 403. |
[22] |
FENG Y, WU J, CHI Q, et al. Defects and aliovalent doping engineering in electroceramics. Chem. Rev., 2020, 120(3): 1710.
DOI PMID |
[23] | ZHANG C, CHEN Y, LI X, et al. Effect of LiF addition on sintering behavior and dielectric breakdown mechanism of MgO- based microwave dielectric ceramics. J. Mater., 2021, 7(3): 478. |
[24] | TAN Z, LIN H, SONG K, et al. Effects of TiO2 additive on ultra-low-loss MgO-LiF microwave dielectric ceramics. Ceram. Inter., 2022, 46(5): 5753. |
[25] | XIONG Z, TANG B, ZHANG X, et al. Suppression of Ti3+ generation in Ba3.75Nd9.5Ti17.5M0.5O54 (M = Cu, Cr, Al, Mn) ceramics. Ceram. Inter., 2018, 44(15): 19058. |
[1] | Hui GAN, Chuan-Bin WANG, Qiang SHEN, Lian-Meng ZHANG. Preparation of La2NiMnO6 Double-perovskite Ceramics by Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2019, 34(5): 541-545. |
[2] | LI Yang, HU Li-Li, YANG Bo-Bo, SHI Ming-Ming, ZOU Jun. Effect of Sintering Temperature on Luminescence Properties of Color Conversion Glasses in Borosilicate Glasses [J]. Journal of Inorganic Materials, 2017, 32(3): 257-262. |
[3] | SUN Shu-Miao, YU Yang, MI Le, YU Yun, CAO Yun-Zhen, SONG Li-Xin. Effect of Sintering Temperature on Structure and Electric Performance of La0.67Ca0.33-xSrxMnO3 Ceramic [J]. Journal of Inorganic Materials, 2016, 31(9): 943-947. |
[4] | LI Hai-Tao, LI Qian, YAN Yan-Fu, XU Rong-Hui. Effect of ZnO-doping on Sinterability and Microwave Dielectric Property of Ca0.25(Li0.43Sm0.57)0.75TiO3 Ceramics [J]. Journal of Inorganic Materials, 2015, 30(4): 369-373. |
[5] | YAO Xiu-Min,HUANG Zheng-Ren,TAN Shou-Hong. Preparation of Silicon Carbide Reticulated Porous Ceramics Sintered at Low Temperature with PCS as Sintering Additive [J]. Journal of Inorganic Materials, 2010, 15(2): 168-172. |
[6] | CHAO Xiao-Lian, YANG Zu-Pei, AN Wei-Wei. Piezoelectric Characteristics of Low-temperature Sintered BiFeO3-doped PZT-PFW-PMN Ceramics with the Addition of MnO2 [J]. Journal of Inorganic Materials, 2010, 25(12): 1242-1246. |
[7] |
JIANG Min-Hong,CHEN He-Xin,LIU Xin-Yu,YANG Li-Qing,ZHOU Chang-Rong.
Sintering Processing and Piezoelectric Properties of K0.5Na0.5NbO3-BiFeO3 Lead-free Ceramics [J]. Journal of Inorganic Materials, 2009, 24(6): 1178-1182. |
[8] | DENG Lian-Wen,FENG Ze-Kun,HUANG Xiao-Zhong,ZHOU Ke-Xing,YANG Bing-Chu. Effect of Bi and Mo Doping on Magnetic and Sintered Characteristics of MgCuZn Ferrite [J]. Journal of Inorganic Materials, 2008, 23(4): 669-672. |
[9] | FAN Jun-Liang,PAN Hong-Ge,GAO Ming-Xia,LIN Yan,LIU Ji-Qiang. Synthesis and Performance of LiFePO4/C Prepared with Nonaqueous Sol-Gel Method [J]. Journal of Inorganic Materials, 2007, 22(6): 1032-1036. |
[10] | ZHU Zhi-Gang,LI Bao-Shan,LI Guo-Rong,ZHANG Wang-Zhong,YIN Qing-Rui. Sintering Temperature Influence on the Dielectric and Piezoelectric Properties of Pb(Mn1/3Sb2/3)O3-PbZrO3-PbTiO3 Ceramics [J]. Journal of Inorganic Materials, 2005, 20(4): 1000-1006. |
[11] | LI Bao-Shan,ZHU Zhi-Gang,LI Guo-Rong,YIN Qing-Rui,DING Ai-Li. Sintering Behavior of PMnN-PZT Ceramics [J]. Journal of Inorganic Materials, 2005, 20(4): 993-999. |
[12] | WANG Yi-Lin,ZHAO Mei-Yu,WU Wen-Jun. High Permeability Ni-Cu-Zn Ferrite Prepared by Combined-size Particles Processing [J]. Journal of Inorganic Materials, 2004, 19(4): 926-930. |
[13] | ZHU Qi-Feng,QIU Fa-Bin,QUAN Yu-Jun1,WANG Yong-Wei,QUAN Bao-Fu,XU Bao-Kun. Preparation and Sintering Densification of Nanocrystalline NASICON Solid Material [J]. Journal of Inorganic Materials, 2004, 19(3): 510-516. |
[14] | WANG Shao-Hong,ZHOU He-Ping,CHEN Ke-Xin. Low Dielectric Constant Glass Ceramics Derived from ZnO-Li2O-B2O3-SiO2 System [J]. Journal of Inorganic Materials, 2004, 19(2): 433-438. |
[15] | FU Jun,DONG Ming-You. Study on the Effects of Film Thickness on the Gas-Sensing Properties of SnO2 Thick Film Sensors [J]. Journal of Inorganic Materials, 2001, 16(6): 1255-1258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||