Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (4): 437-444.DOI: 10.15541/jim20220721
• Topical Section on Neuromorphic Materials and Devices (Contributing Editor: WAN Qing) • Previous Articles Next Articles
WANG Tongyu1(), RAN Haofeng1, ZHOU Guangdong1,2()
Received:
2022-11-30
Revised:
2023-01-31
Published:
2023-04-20
Online:
2023-02-07
Contact:
ZHOU Guangdong, professor. E-mail: zhougd@swu.edu.cnAbout author:
WANG Tongyu (2001-), female. E-mail: 2278117615@qq.com
Supported by:
CLC Number:
WANG Tongyu, RAN Haofeng, ZHOU Guangdong. Defect-induced Analogue Resistive Switching Behavior in FeOx-based Memristor and Synaptic Paired-pulse Facilitation Feature[J]. Journal of Inorganic Materials, 2023, 38(4): 437-444.
Fig. 1 Structure and characterization of Ag/FeOx/ITO memristors (a) Schematic diagram of structure of Ag/FeOx/ITO memristors and corresponding SEM section; (b) XRD patterns of FeOx resistance functional layer; (c) XPS spectra of the core-level of the Fe2p; (d) XPS spectra of the core-level of the O1s
Fig. 2 Results of memristor characteristics of Ag/FeOx/ITO memristors FeOx memristors with different thicknesses of functional layerobtained by changing FeOx growth parameters; (a) Memristor characteristic curves of Ag/FeOx/ITO memristor grown at 100 W/1 h and 80 W/35 min; (b) I-V curve of Ag/FeOx/ITO memristor grown at 100 W/2 h; (c, d) Analog resistance characteristic curve phenomena of memristor in the negative voltage region (c) and positive voltage region (d); (e) I-V curves of 100 different devices under the same conditions; (f) Regulation of voltage sweep rate on analog resistive characteristics; (g) Regulation of analog resistance characteristics by different sweep voltage amplitudes; (h) Current-to-time (I-t) curves of the device in different conductive states at the read voltage of 0.2 V; Colorful figures are available on website
Fig. 3 Multiconductivity testing and biological synaptic simulation (a) Multi-current levels after operating the Ag/FeOx/ITO memristor to different conductance states under a reading voltage of 0.2 V with precision exceeding 4 bits for the FeOx-based memristor; (b) PPF pulse test schematic; (c) PPF pulse test results; (d) PPF versus interval of Ag/FeOx/ITO memristor
Fig. 4 Results of fitting the physical mechanism of Ag/FeOx/ITO memristors (a) Using the Fowler-Nordheim tunneling mechanism; (b) Using the Schottky emission tunneling mechanism; (c) Using the Ohmic current mechanism; (d) Using the Frenkel-Poole tunneling mechanism
Fig. 5 Physical model constructed based on trap energy level tunneling (a) Electrons are injected from Ag electrode and filled with defect energy levels in FeOx; (b) Defect energy level in FeOx is filled and the device is converted to LRS; (c) Reverse voltage, electrons are injected from the ITO electrode and filled with defect energy levels; (d) Defect energy level is filled and the device transitions to LRS again
[1] |
YAO P, WU H, GAO B, et al. Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577(7792):641.
DOI |
[2] | ZHOU G, REN Z, WANG L, et al. Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device. Nano Energy, 2019, 63: 103793. |
[3] |
SUN B, WEI L, LI H, et al. White-light-controlled ferromagnetic and ferroelectric properties of multiferroic single-crystalline BiFeO3 nanoflowers at room temperature. J. Mater. Chem. C, 2014, 2(36):7547.
DOI URL |
[4] |
ZHOU G, REN Z, WANG L, et al. Artificial and wearable albumen protein memristor arrays with integrated memory logic gate functionality. Mater. Horiz., 2019, 6(9): 1877.
DOI URL |
[5] | XU W, MIN S, HWANG H, et al. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv., 2016, 2(6):1501350. |
[6] |
GAO B, BI Y, CHEN H, et al. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. ACS Nano, 2014, 8(7):6998.
DOI PMID |
[7] |
DU C, MA W, CHANG T, et al. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater., 2015, 25(27):4290.
DOI URL |
[8] |
YANG J, STRUKOV D, STEWART D, et al. Memristive devices for computing. Nat. Nanotechnol., 2013, 8(1):13.
DOI PMID |
[9] |
CHANG T, YANG Y, LU W. Building neuromorphic circuits with memristive devices. IEEE Circ. Syst. Mag., 2013, 13(2):56.
DOI URL |
[10] |
KUZUM D, YU S, WONG H. Synaptic electronics: materials, devices and applications. Nanotechnology, 2013, 24(38):382001.
DOI URL |
[11] |
BORGHETTI J, SNIDER G, KUEKES P, et al. Memristive switches enable stateful logic operations via material implication. Nature, 2010, 464(7290):873.
DOI |
[12] |
HE H K, YANG R, XIA J, et al. High-uniformity memristor arrays based on two-dimensional MoTe2 for neuromorphic computing. Journal of Inorganic Materials, 2022, 37(7):795.
DOI URL |
[13] | TIAN Y, ZHU X J, SUN C, et al. Intrinsically stretchable threshold switching memristor for artificial neuron implementations. Journal of Inorganic Materials, 2023, 38(4):413. |
[14] |
ZHOU F, ZHOU Z, CHEN J, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol., 2019, 14(8):776.
DOI PMID |
[15] |
JIANG J, HU W, XIE D, et al. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale, 2019, 11(3):1360.
DOI PMID |
[16] |
DUAN Q, JING Z, ZOU X, et al. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks. Nat. Commun., 2020, 11(1):3399.
DOI PMID |
[17] |
孙军伟, 杨建领, 刘鹏, 等. 基于双曲函数的通用型荷控忆阻器电路等效模型分析. 电子与信息学报, DOI: 10.11999/JEIT211317.
DOI |
[18] | 陈显峰, 涂雅婷, 周广东, 等. 不同氛围溅射HfO2栅介质薄膜的电学性能和界面微结构. 中国科学(物理学力学天文学), 2011, 41(3):243. |
[19] |
LU J, LI Y, XUAN Z, et al. One transistor one electrolyte-gated transistor for supervised learning in SNNs. IEEE Electron Device Letters, 2021, 43(2):296.
DOI URL |
[20] |
ZHONG Y, TANG J, LI X, et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun., 2021, 12(1):408.
DOI PMID |
[21] | SUN L, WANG Z, JIANG J, et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv., 2021, 7(20):eabg14565. |
[22] |
PAN C, WANG C, LIANG S, et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron., 2020, 3(7):383.
DOI |
[23] |
CHEN H, XUE X, LIU C, et al. Logic gates based on neuristors made from two-dimensional materials. Nat. Electron., 2021, 4(6):399.
DOI |
[24] |
WANG W, ZHOU G, WANG Y, et al. An analogue memristor made of silk fibroin polymer. J. Mater. Chem. C, 2021, 9(41):14583.
DOI URL |
[25] |
HE N, SUN Y, WEN D, et al. Synaptic behavior of Ni-Co layered double hydroxide-based memristor. Appl. Phys. Lett., 2021, 118(17):173503.
DOI URL |
[26] |
WANG Z, XU H, LI X, et al. Synaptic learning and memoryfunctions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater., 2012, 22(13):2759.
DOI URL |
[27] |
ZHANG L, TAO H, HOLT C, et al. A critical window for cooperation and competition among developing retinotectal synapses. Nature, 1998, 395(6697):37.
DOI |
[28] |
ALIBART F, GAO L, HOSKINS B, et al. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 2012, 23(7):075201.
DOI URL |
[29] |
YU S, WU Y, JEYASINGH R, et al. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices, 2011, 58(8):2729.
DOI URL |
[30] |
WANG W, ZHOU G, WANG Y, et al. Multiphotoconductance levels of the organic semiconductor of polyimide-based memristor induced by interface charges. J. Phys. Chem. Lett., 2022, 13(42):9941.
DOI PMID |
[31] |
YAN B, KUANG D, WANG W, et al. Investigation of multi-photoconductance state induced by light-sensitive defect in TiOx-based memristor. Appl. Phys. Lett., 2022, 120(25):253506.
DOI URL |
[32] |
ZHOU G, SUN B, HU X, et al. Negative photoconductance effect: an extension function of the TiOx-based memristor. Adv. Sci., 2021, 8(13):2003765.
DOI URL |
[33] |
HU X, WANG W, SUN B, et al. Refining the negative differential resistance effect in a TiOx-based memristor. J. Phys. Chem. Lett., 2021, 12(22):5377.
DOI URL |
[34] |
ZHOU G, DUAN S, LI P, et al. Coexistence of negative differential resistance and resistive switching memory at room temperature in TiOx modulated by moisture. Adv. Electron. Mater., 2018, 4(4):1700567.
DOI URL |
[35] |
ZHOU G, WANG Z, SUN B, et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater., 2022, 8(7):2101127.
DOI URL |
[36] |
ZHOU G, JI X, LI J, et al. Second-order associative memory circuit hardware implemented by the evolution from battery-like capacitance to resistive switching memory. iScience, 2022, 25(10):105240.
DOI URL |
[37] | SUN B, ZHOU G, GUO T, et al. Biomemristors as the next generation bioelectronics. Nano Energy, 2020, 75: 104938. |
[38] |
ZHOU G, YANG X, XIAO L, et al. Investigation of a submerging redox behavior in Fe2O3 solid electrolyte for resistive switching memory. Appl. Phys. Lett., 2019, 114(16):163506.
DOI URL |
[39] |
ZHOU G, SUN B, YAO Y, et al. Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires. Appl. Phys. Lett., 2016, 109(14):143904.
DOI URL |
[40] |
LIN P, LI C, WANG Z, et al. Three-dimensional memristor circuits as complex neural networks. Nat. Electron., 2020, 3(4):225.
DOI |
[41] |
WANG Z, WU H, BURR G, et al. Resistive switching materials for information processing. Nat. Rev. Mater., 2020, 5(3):173.
DOI |
[42] |
LIAO C, HU X, LIU X, et al. Self-selective analogue FeOx-based memristor induced by the electron transport in the defect energy level. Appl. Phys. Lett., 2022, 121(12):123505.
DOI URL |
[43] |
YAN B, KUANG D, WANG W, et al. Investigation of multi-photoconductance state induced by light-sensitive defect in TiO x-based memristor. Appl. Phys. Lett., 2022, 120(25):253506.
DOI URL |
[44] |
HU S G, LIU Y, CHEN T P, et al. Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based memristor. Appl. Phys. Lett., 2013, 103(13):133701.
DOI URL |
[45] |
CHIOU Y, GAMBINO J, MOHAMMAD M. Determination of the Fowler-nordheim tunneling parameters from the Fowler-nordheim plot. Solid-State Electron., 2001, 45(10):1787.
DOI URL |
[46] |
BARTH S, WOLF U, BÄSSLER H, et al. Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation. Phys. Rev. B, 1999, 60(12):8791.
DOI URL |
[47] |
LANDAUER R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1957, 1(3):223.
DOI URL |
[48] | SZE S. Physics of Semiconductor Devices. 2nd ed.Section 7.3.4 Wiley, New York. 1981. |
[1] | TIAN Yu, ZHU Xiaojian, SUN Cui, YE Xiaoyu, LIU Huiyuan, LI Runwei. Intrinsically Stretchable Threshold Switching Memristor for Artificial Neuron Implementations [J]. Journal of Inorganic Materials, 2023, 38(4): 413-420. |
[2] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[3] | HE Huikai, YANG Rui, XIA Jian, WANG Tingze, DONG Dequan, MIAO Xiangshui. High-uniformity Memristor Arrays Based on Two-dimensional MoTe2 for Neuromorphic Computing [J]. Journal of Inorganic Materials, 2022, 37(7): 795-801. |
[4] | YANG Chao, LI Ying, YAN Lu, CAO Yun-Zhen. Influence of Catalyst Film Thickness Deposited by Atomic Layer Deposition on Growth of Aligned Carbon Nanotubes [J]. Journal of Inorganic Materials, 2016, 31(7): 681-686. |
[5] | PAN Guo-Xiang, CHEN Jian, NI Zhe-Ming, CAO Feng, HU Shuang-Shuang, LIN Kai, LI Jin-Hua, ZHU Zeng-Lin. Microstucture and Heat Resistance of Coated Yellow Iron Oxide Pigment [J]. Journal of Inorganic Materials, 2016, 31(1): 75-80. |
[6] | WANG Jun, ZHANG Bao-Lin, YANG Gao, WANG Lei, XIE Song-Bo, LI Xuan, GAO Fa-Bao. Synthesis and Application of Magnetic Iron Oxide Nanoparticles as High Efficiency Magnetic Resonance Imaging Contrast Agent [J]. Journal of Inorganic Materials, 2015, 30(1): 53-58. |
[7] | ZENG Xiao-Bo, HU Hao, XIE Li-Qin, LAN Fang, WU Yao, GU Zhong-Wei. Preparation and Properties of Supermagnetic Calcium Phosphate Composite Scaffold [J]. Journal of Inorganic Materials, 2013, 28(1): 79-84. |
[8] | CAO Shao-Wen, ZHU Ying-Jie, WANG Ke-Wei, CHEN Feng, CHENG Guo-Feng, HUANG Yue-Hong. Preparation, Characterization and Application of Hollow Microspheres Assembled with Nanocrystals of Iron Oxides [J]. Journal of Inorganic Materials, 2011, 26(5): 458-466. |
[9] | YANG Yu-Dong,LIANG Yong,SONG Zhi-Xia,XIAN Quan-Gang. Influence of Preparation Parameters and Characterization of Nano-compound Superparamagnetic Iron Oxide Particle in Dextran System [J]. Journal of Inorganic Materials, 2005, 20(1): 225-229. |
[10] | DONG Rui,JIANG Ji-Sen,YANG Xie-Long. Preparation of Iron Oxide Nanoparticles in Non-aqueous Solution [J]. Journal of Inorganic Materials, 2002, 17(5): 967-972. |
[11] | ZHU Yi-Hua,WU Qiu-Fang,LI Chun-Zhong. Oxidation Behaver of Fe3O4 Coaded with SiO2 by Fluidized CVD [J]. Journal of Inorganic Materials, 2000, 15(1): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||