Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (1): 32-42.DOI: 10.15541/jim20220384
Special Issue: 【信息功能】敏感陶瓷(202409)
• Topical Section: Anti-epidemic Biomaterials (Contributing Editor: YANG Yong) • Previous Articles Next Articles
LIU Yao1,2(), YOU Xunhai1,3, ZHAO Bing1,3, LUO Xiaoying4(), CHEN Xing1,2,3()
Received:
2022-07-04
Revised:
2022-08-18
Published:
2023-01-20
Online:
2022-09-15
Contact:
CHEN Xing, professor. E-mail: xingchen@hfut.edu.cn;About author:
LIU Yao (1993-), female, PhD candidate. E-mail: 18691965261@163.com
Supported by:
CLC Number:
LIU Yao, YOU Xunhai, ZHAO Bing, LUO Xiaoying, CHEN Xing. Functional Nanomaterials for Electrochemical SRAS-CoV-2 Biosensors: a Review[J]. Journal of Inorganic Materials, 2023, 38(1): 32-42.
Detection method | Time/h | Advantage | Disadvantage |
---|---|---|---|
Reverse transcrition-polymerase chain reaction (RT-PCR) | 4-6 | High sensitivity and reliability Low cost Versatility in sample types | Special instruments Complicated operation Time-consuming |
Enzyme linked immunosorbent assay (ELISA) | 1-3 | Simple operation Low price Fast detection | Low specificity Suitability only for the late stage of the disease |
Surface-enhanced Raman spectroscopy (SERS) | <1 | Simple construction Good repeatability | Specialized SERS active substrates |
Electrochemical detection | <1 | Lower cost Simpler construction Higher specificity Relatively lower sensitivity | Lower clinical trial accuracy |
Table 1 Comparison of detection methods for SARS-CoV-2 detection
Detection method | Time/h | Advantage | Disadvantage |
---|---|---|---|
Reverse transcrition-polymerase chain reaction (RT-PCR) | 4-6 | High sensitivity and reliability Low cost Versatility in sample types | Special instruments Complicated operation Time-consuming |
Enzyme linked immunosorbent assay (ELISA) | 1-3 | Simple operation Low price Fast detection | Low specificity Suitability only for the late stage of the disease |
Surface-enhanced Raman spectroscopy (SERS) | <1 | Simple construction Good repeatability | Specialized SERS active substrates |
Electrochemical detection | <1 | Lower cost Simpler construction Higher specificity Relatively lower sensitivity | Lower clinical trial accuracy |
Fig. 2 Electrochemical biosensors based on gold nanomaterials for the detection of SARS-CoV-2 (a) Schematic diagram of probe DNA fixation and target nucleotide hybridization on gold electrode[46]; (b) SEM images of 3D gold nanoneedle structures[47];(c-e) Square wave stripping voltammetric response and corresponding calibration plots of 3D gold nanoneedle modified electrode toward S and ORF1ab genes[47]; (f) SEM and (g) TEM images of PEDOT/AuNPs/AG[48]; (h-i) Nyquist plots and corresponding calibration plots of the PEDOT/AuNPs/AG/BSA modified electrode toward different positive serum concentrations[48]
Fig. 3 Metal oxide nanomaterials used in electrochemical sensors to detect SARS-CoV-2 (a) Schematic of portable electrochemical biosensor based on probe recognition technology for the detection of SARS-CoV-2 RNA[6]; (b) DPV curves for different concentrations of artificial target for the SARS-CoV-2 biosensor[6]; (c) Resulting calibration plot for lgC vs. DPV response signals[6]; (d) SEM image of the Co-functionalized TNTs[49]; (e) Amperometry response curves of Co-TNT on SARS-CoV-2 S protein of different concentrations[49]; (f) Amperometry response curves of Co-TNT sensor upon exposure to SARS-CoV-2 S protein of different concentrations[49]; (g) FESEM image of antibodies being deposited on ZnO/rGO[5]; (h-i) Nyquist plots and corresponding calibration curve of the ZnO/rGO modified electrode towards N-protein[5] ; Colorful figures are available on website
Fig. 4 Electrochemical biosensors based on carbon nanomaterials for the detection of SARS-CoV-2 (a) Schematic diagram of CBs modified SPE for SARS-CoV-2 detection[50]; (b, c) Electrochemical response signal and corresponding calibration curves of the CBs modified SPE towards S (b) and N (c) protein[50]; (d) Preparation process and SEM image of functionalized carbon nanofiber (CNF) [51]; (e, f) Square wave voltammetric respond (e) and corresponding calibration curves (f) of the the functionalized CNF modified electrode towards nucleocapsid protein at different concentrations[51]; CBs: Carbon black nanomaterials; SPE: Screen printing electrodes; EDC/NHS: 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydro/N-Hydroxy succinimide; Colorful figures are available on website
Fig. 5 Graphene nanocomposites used in electrochemical sensors to detect SARS-CoV-2 (a) Schematic diagram of functionalized graphene connected to the corresponding bioreceptors by covalent bonds[52]; (b, c) DPV respond (b) and Nyquist diagram (c) of the electrode at different steps[52]; (d) Surface modification process of reduced graphene oxide nanosheets by carboxyl functionalization[55]; (e) Continuous detection of neo-coronavirus S protein after sensor regeneration[55]. CAb: Capture antibody; DAb: Detector antibody; PI: Polyimide; BSA: Bovine serum albumin: PBA: 1-Pyrenebutyric acid; Fc: Fragment crystallizable; Fab: Fragment of antigen binding; M: mol/L; Colorful figures are available on website
Fig. 6 Paper-based electrochemical biosensor for diagnosing COVID-19[59] (a) Schematic illustration of the detection procedure of COVID-19; (b) SEM image of the corresponding cross-sectional of GO modified paper; (c, d) Square wave stripping voltammetric responses of SARS-CoV-2 IgG (c) and IgM (d) at different concentrations; (e) linear relationship between Δ current vs logarithmic concentration of SARS-CoV-2 IgG and IgM and their corresponding relationships between Δ current and concentration of SARS-CoV-2 IgG and IgM; Colorful figures are available on website
Material | Method | Detecting object | Limit of detection | Ref. |
---|---|---|---|---|
AuNPs | i-t | RNA or cDNA | N/A | [ |
Gold nanoneedle | SWV | S gene Orf1ab gene | 5.0×10-18 g·μL-1 6.8×10-18 g·μL-1 | [ |
AuNPs/PEDOT | EIS | Positive and negative serum sample | N/A | [ |
Au@Fe3O4/rGO | DPV | RNA | 3×10-18 mol·L-1 | [ |
Co-TiO2 nanotubes | i-t | RBD | 7×10-10 mol·L-1 | [ |
ZnO/rGO | EIS | N protein antigens | 2×10-14 g·mL-1 | [ |
Carbon black nanomaterial | LSV | S protein N protein | 1.9×10-8 g·mL-1 8×10-9 g·mL-1 | [ |
Laser-engraved graphene | LSV | N-protein, S1-IgM S1-IgG C-reactive protein | N/A | [ |
AuNPs/rGO | EIS | S1 protein RBD antibodies | 2.8×10-15 mol·L-1 1.69×10-14 mol·L-1 | [ |
SiO2@UiO-66 | EIS | S protein | 1×10-13 g·mL-1 | [ |
GO | SWV | IgG IgM | 9.6×10-10 g·mL-1 1.4×10-10 g·mL-1 | [ |
Au@Pt/MIL-5(Al) | DPV | N-protein | 8.33×10-12 g·mL-1 | [ |
Table 2 Comparison of SARS-CoV-2 detection performance of electrochemical sensors constructed from different nanomaterials
Material | Method | Detecting object | Limit of detection | Ref. |
---|---|---|---|---|
AuNPs | i-t | RNA or cDNA | N/A | [ |
Gold nanoneedle | SWV | S gene Orf1ab gene | 5.0×10-18 g·μL-1 6.8×10-18 g·μL-1 | [ |
AuNPs/PEDOT | EIS | Positive and negative serum sample | N/A | [ |
Au@Fe3O4/rGO | DPV | RNA | 3×10-18 mol·L-1 | [ |
Co-TiO2 nanotubes | i-t | RBD | 7×10-10 mol·L-1 | [ |
ZnO/rGO | EIS | N protein antigens | 2×10-14 g·mL-1 | [ |
Carbon black nanomaterial | LSV | S protein N protein | 1.9×10-8 g·mL-1 8×10-9 g·mL-1 | [ |
Laser-engraved graphene | LSV | N-protein, S1-IgM S1-IgG C-reactive protein | N/A | [ |
AuNPs/rGO | EIS | S1 protein RBD antibodies | 2.8×10-15 mol·L-1 1.69×10-14 mol·L-1 | [ |
SiO2@UiO-66 | EIS | S protein | 1×10-13 g·mL-1 | [ |
GO | SWV | IgG IgM | 9.6×10-10 g·mL-1 1.4×10-10 g·mL-1 | [ |
Au@Pt/MIL-5(Al) | DPV | N-protein | 8.33×10-12 g·mL-1 | [ |
[1] |
CHU D K W, PAN Y, CHENG S M S, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clinical Chemistry, 2020, 66(4): 549.
DOI PMID |
[2] |
OROOJI Y, SOHRABI H, HEMMAT N, et al. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Letters, 2020, 13(1): 18.
DOI URL |
[3] | SAMSON R, NAVALE G R, DHARNE M S, et al. Biosensors: frontiers in rapid detection of COVID-19. Biotech, 2020, 10(9): 385. |
[4] |
ALAFEEF M, DIGHE K, MOITRA P, et al. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 2020, 14(12): 17028.
DOI PMID |
[5] |
HAGHAYEGH F, SALAHANDISH R, HASSANI M, et al. Highly stable buffer-based zinc oxide/reduced graphene oxide nanosurface chemistry for rapid immunosensing of SARS-CoV-2 antigens. ACS Appl. Mater. Interfaces, 2022, 14(8): 10844.
DOI URL |
[6] |
ZHAO H, LIU F, XIE W, et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sensors and Actuators B Chemical, 2021, 327: 128899.
DOI URL |
[7] |
FALSEY A R, WALSH E E. Novel coronavirus and severe acute respiratory syndrome. Lancet, 2003, 361(9366): 1312.
DOI PMID |
[8] |
ZAKI A M, VANBOHEEMEN S, BESTEBROER T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine, 2012, 367: 1814.
DOI URL |
[9] |
ZHU N, ZHANG D, WANG W, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 2020, 382(8): 727.
DOI URL |
[10] |
YAO H, SONG Y, CHEN Y, et al. Molecular architecture of the SARS-CoV-2 virus. Cell, 2020, 183(3): 730.
DOI PMID |
[11] |
CHOUDHRY N, ZHAO X, XU D, et al. Chinese therapeutic strategy for fighting COVID-19 and potential small-molecule inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Journal of Medicinal Chemistry, 2020, 63(22): 13205.
DOI URL |
[12] |
THOMS M, BUSCHAUER R, AMEISMEIER M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science, 2020, 369(6508): 1249.
DOI PMID |
[13] |
FENG W, NEWBIGGING A M, LE C, et al. Molecular diagnosis of COVID-19: challenges and research needs. Analytical Chemistry, 2020, 92: 10196.
DOI PMID |
[14] |
XIE C B, JIANG L X, HUANG G, et al. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. International Journal of Infectious Diseases, 2020, 93: 264.
DOI PMID |
[15] |
SADIGHBAYAN D, HASANZADEH M, GHAFAR-ZADEH E. Biosensing based on field-effect transistors (FET): recent progress and challenges. Trac-Trends in Analytical Chemistry, 2020, 133: 116067.
DOI URL |
[16] | LIU W, LIU L, KOU G, et al. Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2. Journal of Clinical Microbiology, 2020, 58(6): e0461. |
[17] |
PENG Y, LIN C, LI Y, et al. Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS2 SERS biosensors with capillary effect. Matter, 2022, 5(2): 694.
DOI URL |
[18] |
SITJAR J, LIAO J D, LEE H, et al. Challenges of SERS technology as a non-nucleic acid or -antigen detection method for SARS-CoV-2 virus and its variants. Biosensors & Bioelectronics, 2021, 181: 113153.
DOI URL |
[19] |
YANG Y, PENG Y, LIN C, et al. Human ACE2-functionalized gold "virus-trap" nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Letters, 2021, 13(1): 109.
DOI PMID |
[20] |
CHAIBUN T, PUENPA J, NGAMDEE T, et al. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nature Communications, 2021, 12(1): 802.
DOI PMID |
[21] |
KUDR J, MICHALEK P, ILIEVA L, et al. COVID-19: a challenge for electrochemical biosensors. TrAC Trends in Analytical Chemistry, 2021, 136: 116192.
DOI URL |
[22] |
TRAN V V, TRAN N H T, HWANG H S, et al. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: potential for rapid COVID-19 detection. Biosensors & Bioelectronics, 2021, 182: 113192.
DOI URL |
[23] |
EJAZI S A, GHOSH S, ALI N. Antibody detection assays for COVID-19 diagnosis: an early overview. Immunology and Cell Biology, 2020, 99(1): 21.
DOI URL |
[24] | MATHEW D, GILES J R, BAXTER A E, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, 369(6508): 8511. |
[25] |
ONG D, FRAGKOU P C, SCHWEITZER V A, et al. How to interpret and use COVID-19 serology and immunology tests. Clinical Microbiology and Infection, 2021, 27(7): 981.
DOI URL |
[26] |
KIMMEL D W, LEBLANC G, MESCHIEVITZ M E, et al. Electrochemical sensors and biosensors. Analytical Chemistry, 2012, 84(2): 685.
DOI PMID |
[27] | FREW J E, HILL H A. Electrochemical biosensors. Analytical Chemistry, 2010, 39(5): 1747. |
[28] | BALKOURANI G, BROUZGOU A, ARCHONTI M, et al. Emerging materials for the electrochemical detection of COVID-19. Journal of Electroanalytical Chemistry, 2021, 893: 115285. |
[29] |
ANTIOCHIA R. Developments in biosensors for CoV detection and future trends. Biosensors and Bioelectronics, 2020, 173: 112777.
DOI URL |
[30] |
ERDEN P E, KILIÇ E. A review of enzymatic uric acid biosensors based onamperometric detection. Talanta, 2013, 107: 312.
DOI URL |
[31] |
BRETT C M A, OLIVEIRA B A M. Electrochemical sensing in solution-origins, applications and future perspectives. Journal of Solid State Electrochemistry, 2011, 15(7/8): 1487.
DOI URL |
[32] |
GUTH U, VONAU W, ZOSEL J. Recent developments in electrochemical sensor application and technology-a review. Measurement Science and Technology, 2009, 20(4): 042002.
DOI URL |
[33] |
KARIMI-MALEH H, OROOJI Y, KARIMI F, et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosensors & Bioelectronics, 2021, 184: 113252.
DOI URL |
[34] | CHAROENKITAMORN K, TUE PT, CHIKAE M, et al. Gold nanoparticle-labeled electrochemical immunoassay using open circuit potential for human chorionic gonadotropin detection. Electroanalysis, 2018, 30(8): 1766. |
[35] |
RASHED M Z, KOPECHEK J A, PRIDDY M C, et al. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance- based detector. Biosensors & Bioelectronics, 2021, 171: 112709.
DOI URL |
[36] |
LASSERRE P, BALANSETHUPATHY B, VEZZA V J, et al. SARS-CoV-2 aptasensors based on electrochemical impedance spectroscopy and low-cost gold electrode substrates. Analytical Chemistry, 2022, 94(4): 2126.
DOI PMID |
[37] |
XU H, ZHENG J, LIANG H, et al. Electrochemical sensor for cancer cell detection using calix 8 arene/polydopamine/phosphorene nanocomposite based on host-guest recognition. Sensors and Actuators B-Chemical, 2020, 317: 128193.
DOI URL |
[38] |
SEO G, LEE G, MI J K, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14: 5135.
DOI PMID |
[39] |
MOKHTARZADEH A, EIVAZZADEH-KEIHAN R, PASHAZADEH P, et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends in Analytical Chemistry, 2017, 97: 445.
DOI URL |
[40] |
YUAN F, XIA Y, LU Q, et al. Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta, 2022, 244: 123419.
DOI URL |
[41] |
ZHONG C, YANG B, JIANG X, et al. Current progress of nanomaterials in molecularly imprinted electrochemical sensing. Critical Reviews in Analytical Chemistry, 2018, 48(1): 15.
DOI PMID |
[42] |
CHOI H K, LEE M J, SANG N L, et al. Noble metal nanomaterial-based biosensors for electrochemical and optical detection of viruses causing respiratory illnesses. Frontiers in Chemistry, 2021, 9: 672739.
DOI URL |
[43] |
REZAEI B, BOROUJENI MK, ENSAFI A A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosensors & Bioelectronics, 2015, 66: 490.
DOI URL |
[44] |
XIAO T, HUANG J, WANG D, et al. Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta, 2020, 206: 120210.
DOI URL |
[45] |
JANS H, HUO Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chemical Society Reviews, 2012, 41(7): 2849.
DOI PMID |
[46] |
TRIPATHY S, SINGH S G. Label-free electrochemical detection of DNA hybridization: a method for COVID-19 diagnosis. Transactions of the Indian National Academy of Engineering, 2020, 5(2): 205.
DOI URL |
[47] |
KASHEFI-KHEYRABADI L, NGUYEN H V, GO A, et al. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosensors & Bioelectronics, 2021, 195: 113649.
DOI URL |
[48] |
LORENZEN A L, DOS SANTOS A M, DOS SANTOS L P, et al. PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochimica Acta, 2022, 404: 139757.
DOI URL |
[49] |
VADLAMANI B S, UPPAL T, VERMA S C, et al. Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors, 2020, 20(20): 5871.
DOI URL |
[50] |
ARDUINI F, CINTI S, MAZZARACCHIO V, et al. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio) sensor design. Biosensors and Bioelectronics, 2020, 156: 112033.
DOI URL |
[51] |
EISSA S, ZOUROB M. Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Analytical Chemistry, 93(3): 1826.
DOI URL |
[52] |
TORRENTE-RODRÍGUEZ R, LUKAS H, TU J, et al. SARS-CoV-2 rapidplex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter, 2020, 3: 1981.
DOI URL |
[53] |
LIV L, OBAN G, NAKIBOLU N, et al. A rapid, ultrasensitive voltammetric biosensor for determining SARS-CoV-2 spike protein in real samples. Biosensors & Bioelectronics, 2021, 192: 113497.
DOI URL |
[54] |
HASHEMI S A, BEHBAHAN N, BAHRANI S, et al. Ultra-sensitive viral glycoprotein detection nanosystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosensors & Bioelectronics, 2021, 171: 112731.
DOI URL |
[55] | ALI MA, HU C, JAHAN S, et al. Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes. Advanced Materials, 2021, 33(7): 2006647. |
[56] | WITT S, ROGIEN A, WERNER D, et al. Boron doped diamond thin films for the electrochemical detection of SARS-CoV-2 S1 protein. Diamond and Related Materials, 2021, 4: 108542. |
[57] |
MEHMANDOUST M, GUMUS Z P, SOYLAK M, et al. Electrochemical immunosensor for rapid and highly sensitive detection of SARS-CoV-2 antigen in the nasal sample. Talanta, 2022, 240: 123211.
DOI URL |
[58] |
TIAN J, LIANG Z, HU O, et al. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochimica Acta, 2021, 387: 138533.
DOI URL |
[59] |
YAKOH A, PIMPITAK U, RENGPIPAT S, et al. Paper-based electrochemical biosensor for diagnosing COVID-19: detection of SARS-CoV-2 antibodies and antigen. Biosensors & Bioelectronics, 2020, 176(14): 112912.
DOI URL |
[60] |
RAZIQ A, KIDAKOVA A, BOROZNJAK R, et al. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosensors & Bioelectronics, 2021, 178: 113029.
DOI URL |
[61] |
TORRENTE R, LUKAS H, Tu J, et al. SARS-CoV-2 rapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter, 2020, 3: 1981.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | LI Shiqi, BAO Qunqun, HU Ping, SHI Jianlin. Anti-metastatic Immunotherapy of Advanced Tumors Based on EDTA Intercalated Zinc-aluminum Layered Double Hydroxide [J]. Journal of Inorganic Materials, 2024, 39(9): 1044-1052. |
[5] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[6] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[7] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[8] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[9] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[10] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[11] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[12] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[13] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[14] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[15] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||