Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (10): 1118-1124.DOI: 10.15541/jim20210059
• RESEARCH LETTER • Previous Articles
ZHU Danyang1,2(), QIAN Kang1,3, CHEN Xiaopu1,2, HU Zewang1,2, LIU Xin1,2, LI Xiaoying1,2, PAN Yubai3, MIHÓKOVÁ Eva4, NIKL Martin4, LI Jiang1,2(
)
Received:
2021-02-01
Revised:
2021-03-29
Published:
2021-10-20
Online:
2021-05-10
Contact:
LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cn
Supported by:
CLC Number:
ZHU Danyang, QIAN Kang, CHEN Xiaopu, HU Zewang, LIU Xin, LI Xiaoying, PAN Yubai, MIHÓKOVÁ Eva, NIKL Martin, LI Jiang. Fine-grained Ce,Y:SrHfO3 Scintillation Ceramics Fabricated by Hot Isostatic Pressing[J]. Journal of Inorganic Materials, 2021, 36(10): 1118-1124.
Fig. 1 FESEM micrographs of the starting powders ((a) HfO2, (b) SrCO3, (c) CeO2, (d) Y2O3, (e) ball-milled powder mixture, (f) Ce,Y:SrHfO3 powder calcined at 1200 ℃ for 8 h), (g) XRD patterns of the calcined powder, and (h) FESEM micrograph of the Ce,Y:SrHfO3 ceramics fabricated by vacuum sintering
Fig. 2 FESEM images of the thermally etched surfaces of the Ce/Y:SrHfO3 ceramics pre-sintered at different temperatures for 2 h (a) 1450 ℃; (b) 1500 ℃; (c) 1550 ℃; (d) 1600 ℃; (e) 1650 ℃; (f) Relative densities and average grain sizes of the Ce,Y:SrHfO3 ceramics with different pre-sintering temperatures
Fig. 3 (a) Photograph of the Ce,Y:SrHfO3 ceramics vacuum- sintered at different temperatures combined with the HIP post- treatment and (b) in-line transmittance of the HIP post-treated Ce,Y:SrHfO3 ceramics (1 mm thickness) pre-sintered at 1500 and 1550 ℃, respectively
[1] |
NIKL M, YOSHIKAWA A. Recent R & D trends in inorganic single-crystal scintillator materials for radiation detection. Advanced Optical Materials, 2015, 3(4):463-481.
DOI URL |
[2] |
NIKL M, MIHOKOVA E, PEJCHAL J, et al. Scintillator Materials—achievements, opportunities and puzzles. IEEE Transactions on Nuclear Science, 2008, 55(3):1035-1041.
DOI URL |
[3] |
NIKL M. Scintillation detectors for X-rays. Measurement Science and Technology, 2006, 17:R37-R54.
DOI URL |
[4] |
NIKL M, LAGUTA V V, VEDDA A A. Complex oxide scintillators: material defects and scintillation performance. Physica Status Solidi B-Basic Solid State Physics, 2008, 245(9):1701-1722.
DOI URL |
[5] |
MAO RI-HUA, ZHANG LI-YUAN, ZHU REN-YUAN. Optical and scintillation properties of inorganic scintillators in high energy physics. IEEE Transactions on Nuclear Science, 2008, 55(4):2425-2431.
DOI URL |
[6] |
SEIICHI Y, NITTA H. Development of an event-by-event based radiation imaging detector using GGAG:Ce ceramic scintillator for X-ray CT. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 900:25-31.
DOI URL |
[7] |
LIU SHU-PING, MARES J A, FENG XI-QI, et al. Towards bright and fast Lu3Al5O12:Ce,Mg optical ceramics scintillators. Advanced Optical Materials, 2016, 4(5):731-739.
DOI URL |
[8] | YANAGIDA T, FUKABORI A, FUJIMOTO Y A. et al. Scintillation properties of transparent Lu3Al5O12(LuAG) ceramics doped with different concentrations of Pr3+. Physica Status Solidi A-Applications and Materials Science, 2011, 8(1):140-143. |
[9] |
JI Y M, JIANG D Y, CHEN J J, et al. Preparation, luminescence and sintering properties of Ce-doped BaHfO3 phosphors. Optical Materials, 2006, 28(4):436-440.
DOI URL |
[10] |
SEFERIS I E, FIACZYK K, SPASSKY D, et al. Synthesis and luminescence properties of BaHfO3:Pr ceramics. Journal of Luminescence, 2016, 189:148-152.
DOI URL |
[11] |
JI YA-MING, JIANG DAN-YU, SHI JIAN-LIN. La2Hf2O7:Ti4+ ceramic scintillator for X-ray imaging. Journal of Materials Research, 2005, 20(3):567-570.
DOI URL |
[12] |
WAHID K, POKHREL M, MAO Y B. Structural, photoluminescence and radioluminescence properties of Eu3+ doped La2Hf2O7 nanoparticles. Journal of Solid State Chemistry, 2016, 245:89-97.
DOI URL |
[13] |
YI HAI-LAN, ZOU XIAO-QING, YANG YAN, et al. Fabrication of highly transmitting LaGdHf2O7 ceramics. Journal of the American Ceramic Society, 2011, 94(12):4120-4122.
DOI URL |
[14] |
WANG ZHENG-JUAN, ZHOU GUO-HONG, ZHANG JIAN, et al. Luminescence properties of Eu3+-doped lanthanum gadolinium hafnates transparent ceramics. Optical Materials, 2016, 71:5-8.
DOI URL |
[15] |
AN L Q, ITO A, GOTO T. Fabrication of transparent Lu2Hf2O7 by reactive spark plasma sintering. Optical Materials, 2013, 35(4):817-819.
DOI URL |
[16] |
ZHOU GUO-HONG, WANG ZHENG-JUAN, ZHOU BO-ZHU, et al. Fabrication of transparent Y2Hf2O7 ceramics via vacuum sintering. Optical Materials, 2013, 35(4):774-777.
DOI URL |
[17] |
HAVLAK L, BOHACEK P, NIKL M, et al. Preparation and luminescence of Lu4Hf3O12 powder samples doped by trivalent Eu, Tb, Ce, Pr, Bi ions. Optical Materials, 2010, 32(10):1372-1374.
DOI URL |
[18] | JOANNA J P, ZYCH E. Microwave-assisted hydrothermal synthesis and spectroscopic characteristics of Lu4Hf3O12:Pr scintillator. RSC Advances, 2016, 6(61):56101-56107. |
[19] |
BOHÁCEK P, TRUNDA B, BEITLEROVÁ A, et al. Rare- earth-free luminescent non-stoichiometric phases formed in SrO-HfO2 ternary compositions. Journal of Alloys and Compounds, 2013, 580:468-474.
DOI URL |
[20] |
JARÝ V, BOHÁČEK P, PEJCHAL J, et al. Scintillating ceramics based on non-stoichiometric strontium hafnate. Optical Materials, 2018, 77:246-252.
DOI URL |
[21] |
JI Y M, JIANG D Y, QIN L S, et al. Preparation and luminescent properties of nanocrystals of Ce3+ activated SrHfO3. Journal of Crystal Growth, 2005, 280(1/2):93-98.
DOI URL |
[22] |
LOEF E V V, HIGGINS W M, GLODO J, et al. Scintillation properties of SrHfO3:Ce3+ and BaHfO3:Ce3+ ceramics. IEEE Transactions on Nuclear Science, 2007, 54(3):741-743.
DOI URL |
[23] |
KUROSAWA S, PEJCHAL J, WAKAHARA S, et al. Optical properties and radiation response of Ce:SrHfO3 prepared by the spark plasma sintering method. Radiation Measurements, 2013, 56:155-158.
DOI URL |
[24] | MIHÓKOVÁ E, JARÝ V, FASOLI M, et al. Delayed recombination and excited state ionization of the Ce3+ activator in the SrHfO3 host. Chemical Physics Letters, 2013, 7(3):228-231. |
[25] |
CHIBA H, KUROSAWA S, HARATA K, et al. Luminescence properties of the Mg co-doped Ce:SrHfO3 ceramics prepared by the spark plasma sintering method. Radiation Measurements, 2016, 90:287-291.
DOI URL |
[26] |
KAMADA K, KUROSAWA S, SHOJI Y, et al. Luminescence and scintillation properties of Ce doped SrHfO3 based eutectics. Optical Materials, 2015, 41:41-44.
DOI URL |
[27] |
LING JUN-RONG, ZHOU YOU-FU, XU WEN-TAO, et al. Red-emitting YAG:Ce,Mn transparent ceramics for warm WLEDs application. Journal of Advanced Ceramics, 2020, 9(1):45-54.
DOI URL |
[28] |
LI XIAO-YING, LIU QIANG, HU ZE-WANG, et al. Influence of ammonium hydrogen carbonate to metal ions molar ratio on co-precipitated nanopowders for TGG transparent ceramics. Journal of Inorganic Materials, 2019, 34(7):791-796.
DOI URL |
[29] |
MOHAMMADI F, MIRZAEE O, TAJALLY M, et al. The effects of ball milling time on the rheological, optical, and microstructural properties of YAG transparent ceramics. International Journal of Applied Ceramic Technology, 2020, 17(3):1119-1127.
DOI URL |
[30] |
ZHANG LEI, YANG JUN, YU HONG-YU, et al. High performance of La-doped Y2O3 transparent ceramics. Journal of Advanced Ceramics, 2020, 9(4):493-502.
DOI URL |
[31] |
LOEF E V V, WANG Y M, MILLER S R, et al. Effect of microstructure on the radioluminescence and transparency of Ce-doped strontium hafnate ceramics. Optical Materials, 2010, 33(1):84-90.
DOI URL |
[32] |
KENNEDY B J, HOWARD C J, CHAKOUMAKOS B C. High- temperature phase transitions in SrHfO3. Physical Review B, 1999, 60:2972-2975.
DOI URL |
[33] |
LOUREIRO S M, GAO Y, VENKATARAMANI V. Stability of Ce(III) activator and codopant effect in MHfO3 (M=Ba, Sr) scintillators by XANES. Journal of the American Ceramic Society, 2005, 88(1):219-221.
DOI URL |
[34] |
LIU ZI-YU, TOCI G, PIRRI A, et al. Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders. Journal of Advanced Ceramics, 2020, 9(6):674-682.
DOI URL |
[35] |
QIAN KANG, PAN YU-BAI, HU ZE-WANG, et al. Influence of co-doped alumina on the microstructure and radioluminescence of SrHfO3:Ce ceramics. Journal of the European Ceramic Society, 2020, 40(2):449-455.
DOI URL |
[1] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[2] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[3] | YU Yiping, XIAO Peng, ZHAO Changhao, XU Mengdi, YAO Lidong, LI Wei, WANG Song. Ablation Behavior of High-temperature Laminated Ta/Ta0.5Hf0.5C Cermets under High-frequency Plasma Wind Tunnel Test [J]. Journal of Inorganic Materials, 2025, 40(7): 790-798. |
[4] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[5] | WEI Zhifan, CHEN Guoqing, ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong. ZrB2-HfSi2 Ceramics: Microstructure and Formation Mechanism of Core-rim Structure [J]. Journal of Inorganic Materials, 2025, 40(7): 817-825. |
[6] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[7] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[10] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[11] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[12] | TANG Ying, LI Jie, XIANG Huaicheng, FANG Weishuang, LIN Huixing, YANG Junfeng, FANG Liang. Rattling Effect: A New Mechanism Affecting the Resonant Frequency Temperature Coefficient of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 656-666. |
[13] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[14] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[15] | ZHOU Yangyang, ZHANG Yanyan, YU Ziyi, FU Zhengqian, XU Fangfang, LIANG Ruihong, ZHOU Zhiyong. Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy [J]. Journal of Inorganic Materials, 2025, 40(6): 719-728. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||