Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 451-460.DOI: 10.15541/jim20200465
Special Issue: 电致变色材料与器件; 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• TOPLCAL SECTION • Previous Articles Next Articles
ZHANG Xiang1, LI Wenjie2(), WANG Lebin1, CHEN Xi1, ZHAO Jiupeng2, LI Yao1(
)
Received:
2020-08-14
Revised:
2020-09-22
Published:
2021-05-20
Online:
2021-04-19
Contact:
LI Yao, professor.E-mail: yaoli@hit.edu.cn
About author:
ZHANG Xiang(1986-), male, lecturer. E-mail:zhangxhit@hit.edu.cn
Supported by:
CLC Number:
ZHANG Xiang, LI Wenjie, WANG Lebin, CHEN Xi, ZHAO Jiupeng, LI Yao. Reflective Property of Inorganic Electrochromic Materials[J]. Journal of Inorganic Materials, 2021, 36(5): 451-460.
Fig. 1 Top-view SEM images of coralline V2O5 nanorod architecture (a), digital photos of coralline V2O5 architecture under different voltages (b), SEM images of SnO2/V2O5 films (c), color parameters (Lab color mode) and optical images of SnO2/V2O5 films at different working states (d), cross-sectional SEM image of the ITO/WO3/Ta2O5/Li/V2O5/ITO ECD (Electrochromic Device) (e), digital photos of the ECD in the bleached and colored state (f), schematic illustration of a large-scale Zn-SVO electrochromic display showing three intrinsic colors (g), and digital photographs of the large-scale Zn-SVO display under different voltage bias conditions (h)[17,18,19,20]
Fig. 2 Color effects recorded at a 60° angle for cathodic coloration (yellow stack) and anodic coloration (green stack) of an orange-red 7 double-layer nanoparticle NiO/WO3 stack (a), and electrochromic properties of dense WO3 film and 4-bilayer electrochromic distributed Bragg reflectors with various Bragg wavelength (b) (λB=450, 550, 650 nm)[22,23]
Fig. 4 Scheme and photographs of the two-electrode electrochromic cell (a), digital images of the film during coloration (5-30 s) and bleaching process (1-3 s) (b)[25,26,27]
Fig. 9 Schematic drawing of graphene device (a), schematic representation of working principle of the graphene device (b), thermal camera images of device under the voltage bias of 0 and 3 V, respectively (c, d)[44]
Fig. 10 Crystal structures of Li4Ti5O12 and Li7Ti5O12 (a), visible-to-infrared spectral reflectance (b), photograph (top) and thermograph (bottom) in the two states (c)[45]
[1] | DEB S. A novel electrophotographic system. Applied Optics, 1969,8(101):192-195. |
[2] | ZHANG X, LI W J, LI Y, et al. Research progress of inorganic all-solid-state electrochromic devices. Materials Science and Technology, 2020,28:140-149. |
[3] |
CHEN X, DOU S L, LI W J, et al. All solid state electrochromic devices based on the LiF electrolyte. Chemical Communications, 2020,56:5018-5021.
URL PMID |
[4] | LI W J, ZHANG X, CHEN X, et al. Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chemical Engineering Journal, 2020,398:125628. |
[5] | GREER B. Control System for Electrochromic Devices. U.S. Patent 7277215. 2007-10-2. |
[6] | WANG Z, PRADHAN A, ROZBICKI R. Electrochromic Devices. U.S. Patent 8764951. 2014-7-1. |
[7] | XU Q F, LI J, ZHAO J. A Kind of Electrochromic Glass. China, CN204595399U. 2015-8-26. |
[8] | ZHAO Y M, ZHANG X, CHEN X, et al. Preparation of WO3 films with controllable crystallinity for improved near-Infrared electrochromic performances. ACS Sustainable Chemistry & Engineering, 2020,8(31):11658-11666. |
[9] | XIA X H, TU J P, ZHANG J, et al. Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochimica Acta, 2008,53(18):5721-5724. |
[10] | LI W J, ZHANG X, CHEN X, et al. Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices Electrochimica Acta, 2020,355:136817. |
[11] | ZHOU D, XIE D, XIA X H, et al. All-solid-state electrochromic devices based on WO3||NiO films: material developments and future applications Science China Chemistry, 2017,60(1):3-12. |
[12] |
SHENG M F, ZHANG L P, WEST L J, et al. Multicolor electrochromic dye-doped liquid crystal yolk-shell microcapsules. ACS Applied Materials & Interfaces, 2020,12(26):29728-29736
DOI URL PMID |
[13] |
MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications. Displays, 2006,27:2-18.
DOI URL |
[14] | YU H T, SHAO S, YAN L J, et al. Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 2016,4:2269-2273. |
[15] | CHANDRASEKHAR P, ZAY B J, BIRUR G C, et al. Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices. Advanced Functional Materials, 2002,12(2):95-103. |
[16] | CHERNOVA N A, ROPPOLO M, DILLON A C, et al. Layered vanadium and molybdenum oxides: batteries and electrochromics. Journal of Materials Chemistry, 2009,19:2526-2552. |
[17] | TONG Z Q, LI N, LV H M, et al. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Solar Energy Materials and Solar Cells, 2016,146:135-143. |
[18] | ZHAO G F, WANG W Q, WANG X L, et al. A multicolor electrochromic film based on a SnO2/V2O5 core/shell structure for adaptive camouflage. Journal of Materials Chemistry C, 2019,7:5702-5709. |
[19] |
ZHANG X, LI W J, CHEN X, et al. Inorganic all-solid-state electrochromic devices with reversible color change between yellow-green and emerald green. Chemical Communications, 2020,56:10062-10065.
URL PMID |
[20] | ZHANG W, LI H Z, YU W W, et al. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light: Science & Applications, 2020,9(1):121. |
[21] |
BLANCO A, CHOMSKI E, GRABTCHAK S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000,405(6785):437-440.
DOI URL PMID |
[22] | REDEL E, MLYNARSKI J, MOIR J, et al. Electrochromic Bragg mirror: ECBM. Advanced Materials, 2012,24(35):265-269. |
[23] | XIAO L L, LV Y, LIN J, et al. WO3-based electrochromic distributed Bragg reflector: toward electrically tunable microcavity luminescent device. Advanced Optical Materials, 2018,6(1):1-8. |
[24] |
WANG Z, WANG X Y, CONG S, et al. Towards full-colourtunability of inorganic electrochromic devices using ultracompact Fabry-Perot nanocavities. Nature Communications, 2020,11(1):1-9.
URL PMID |
[25] | ARAKI S, NAKAMURA K, KOBAYASHI K, et al. Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black. Advanced Materials, 2012,24(23):122-126. |
[26] |
TSUBOI A, NAKAMURA K, KOBAYASHI N, et al. A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Advanced Materials, 2013,25(23):3197-3201
URL PMID |
[27] | LI N, WEI P, YU L, et al. Dynamically switchable multicolor electrochromic films. Small, 2019,15(7):1-7. |
[28] | SWANSON T D, BIRUR G C. NASA thermal control technologies for robotic spacecraft. Applied Thermal Engineering, 2003,23(9):1055-1065. |
[29] | LI H, XIE K, PAN Y, et al. Variable emissivity infrared electrochromic device based on polyaniline conducting polymer. Synthetic Metals, 2009,159(13):1386-1388. |
[30] | LOUET C, CANTIN S, DUDON J P, et al. A comprehensive study of infrared reflectivity of poly (3, 4-ethylenedioxythiophene) model layers with different morphologies and conductivities. Solar Energy Materials and Solar Cells, 2015,143:141-151. |
[31] | ZHANG L P, WANG B, LI X B, et al. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. Journal of Materials Chemistry C, 2019,7(32):9878-9891. |
[32] | MODINE F A, SMITH D Y. Approximate formulas for the amplitude and the phase of the infrared reflectance of a conductor. Journal of The Optical Society of America A-Optics Image Science and Vision, 1984,1(12):1171-1174. |
[33] | HALE J S, WOOLLAM J A. Prospects for IR emissivity control using electrochromic structures. Thin Solid Films, 1999,339(1):174-180. |
[34] | FRANKE E B, TRIMBLE C L, SCHUBERT M, et al. All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region. Applied Physics Letters, 2000,77(7):930-932. |
[35] | BESSIERE A, MARCEL C, MORCRETTE M, et al. Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control. Journal of Applied Physics, 2002,91(3):1589-1594. |
[36] | SAUVET K, SAUQUES L, ROUGIER A, et al. IR electrochromic WO3 thin films: from optimization to devices. Solar Energy Mater. Solar Cells, 2009,93:2045-2049. |
[37] | SAUVET K, SAUQUES L, ROUGIER A, et al. Electrochromic properties of WO3 as a single layer and in a full device: from the visible to the infrared. Journal of Physics and Chemistry of Solids, 2010,71:696-699. |
[38] | KISLOV N, GROGER H, PONNAPPAN R. All-solid-state electrochromic variable emittance coatings for thermal management in space. AIP Conference Proceedings, 2003,654(1):172-179. |
[39] | KISLOV N, GROGER H, PONNAPPAN R, et al. Electrochromic variable emittance devices on silicon wafer for spacecraft thermal control. AIP Conference Proceedings, 2004,699(1):112-118. |
[40] | DEMIRYONT H, MOOREHEAD D. Electrochromic emissivity modulator for spacecraft thermal management. Solar Energy Materials and Solar Cells, 2009,93(12):2075-2078. |
[41] | HUANG Y S, ZHANG Y Z, ZENG X T, et al. Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulation characteristics Applied Surface Science, 2002,202(1):104-109. |
[42] | LARSSON A L, NIKLASSON G A. Infrared emittance modulation of all-thin-film electrochromic devices. Materials Letters, 2004,58(20):2517-2520. |
[43] | ZHANG X, TIAN Y L, LI W J, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films Solar Energy Materials and Solar Cells, 2019,200:109916. |
[44] |
SALIHOGLU O, UZLU H B, YAKAR O, et al. Graphene-based adaptive thermal camouflage. Nano Letters, 2018,18(7):4541-4548.
DOI URL PMID |
[45] | MANDAL J, DU S, DONTIGNY M, et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Advanced Functional Materials, 2018,28(36):1-8. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||