Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (1): 105-111.DOI: 10.15541/jim20190161
Special Issue: MAX相和MXene材料; 2020年能源材料论文精选(一) :金属离子电池&燃料电池; MXene材料专辑(2020~2021)
Previous Articles Next Articles
GUO Si-Lin1,2,KANG Shuai1,2(),LU Wen-Qiang1,2
Received:
2019-04-18
Revised:
2019-07-19
Published:
2020-01-20
Online:
2019-09-12
About author:
GUO Si-Lin (1995-), female, Master candidate. E-mail:guosilin@cigit.ac.cn
Supported by:
CLC Number:
GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2020, 35(1): 105-111.
Fig. 3 Morphology with analysis of Ge/MXene (a-c) TEM image of Ge/MXene; (b) Low magnification TEM image, the arrows points to typical MXene layers; (c) High magnification TEM image and thin carbon layer around Ge nanoparticle; (d) HADDF image of Ge/MXene; EDS mappings of (e) C, (f) Ti and (g) Ge
Fig. 4 XRD patterns (a) of Ge/MXene with different annealing time and their TEM images (b-c) 0.5 h; (d-e) 1.5 h; (f) 3 h. Peaks marked with solid circles are from MXene and with cross are from Ge
Fig. 5 (a) Charge-discharge curves of Ge/MXene at different rate; (b) Rate performance, (c) EIS curves, and cycling performance of Ge/MXene with different Ge content ((d) 50wt% and (e) 75wt%)
[1] |
LIU T, LIN L, BI X ,et al. In sit quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol., 2019,14(1):50-56.
DOI URL PMID |
[2] |
JEŻOWSKI P, CROSNIER O, DEUNF E ,et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater., 2017,17(2):167-173.
DOI URL PMID |
[3] |
TONG X, ZHANG F, CHEN G ,et al. Core-shell aluminum@carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv. Energy Mater., 2018,8(6):1701967.
DOI URL |
[4] |
NAYAK P K, ERICKSON E M, SCHIPPER F ,et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater., 2018,8(8):1702397.
DOI URL |
[5] |
WINTER M, BARNETT B, XU K . Before Li ion batteries. Chem. Rev., 2018,118(23):11433-11456.
DOI URL PMID |
[6] |
DING J, HU W, PAEK E ,et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev., 2018,118(14):6457-6498.
DOI URL PMID |
[7] |
DENG J, BAE C, MARCICKI J ,et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nat. Energy, 2018,3(4):261.
DOI URL |
[8] |
YANG Z, GU L, HU Y ,et al. Atomic-scale structure-property relationships in lithium ion battery electrode materials. Ann. Rev. Mater. Res., 2017,47(1):175-198.
DOI URL |
[9] |
SUN Y, LIU N, CUI Y . Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy, 2016,1(7):16071.
DOI URL |
[10] |
SCHMIDT O, HAWKES A, GAMBHIR A ,et al. The future cost of electrical energy storage based on experience rates. Nat. Energy, 2017,2(8):17118.
DOI URL |
[11] |
ALBERTUS P, BABINEC S, LITZELMAN S ,et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy, 2018,3(1):16-21.
DOI URL |
[12] |
CHOI J W, AURBACH D . Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater., 2016,1(4):16013.
DOI URL |
[13] |
CHAN C K, PENG H, LIU G ,et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol., 2008,3(1):31-35.
DOI URL PMID |
[14] |
MO R, ROONEY D, SUN K ,et al. 3D Nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun., 2017,8:13949.
DOI URL PMID |
[15] |
LIU Z, YU Q, ZHAO Y ,et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev., 2019,48(1):285-309.
DOI URL PMID |
[16] |
TARASCON J M, ARMAND M . Issues and challenges facing rechargeable lithium batteries. Nature, 2001,414(6861):359-367.
DOI URL PMID |
[17] |
MA J, SUNG J, HONG J ,et al. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nat. Commun., 2019,10(1):475.
DOI URL PMID |
[18] |
KOVALENKO I, ZDYRKO B, MAGASINSKI A ,et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011,334(6052):75-79.
DOI URL |
[19] |
WU Z, REN W, WEN L ,et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010,4(6):3187-3194.
DOI URL PMID |
[20] |
GOGOTSI Y . Transition metal carbides go 2D. Nat. Mater., 2015,14(11):1079-1080.
DOI URL PMID |
[21] |
NAGUIB M, HALIM J, LU J ,et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc., 2013,135(43):15966-15969.
DOI URL PMID |
[22] |
NAGUIB M, KURTOGLU M, PRESSER V ,et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011,23(37):4248-4253.
DOI URL PMID |
[23] |
FU Z, ZHANG Q, LEGUT D , et al.Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys. Rev. B, 2016,94(10):104103.
DOI URL |
[24] |
WENG H, RANJBAR A, LIANG Y ,et al. Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phys. Rev. B, 2015,92(7):075436.
DOI URL |
[25] |
ZHAO S, KANG W, XUE J . Manipulation of electronic and magnetic properties of M2C (M=Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Appl. Phys. Lett., 2014,104(13):133106.
DOI URL |
[26] |
MA Z, HU Z, ZHAO X ,et al. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C, 2014,118(10):5593-5599.
DOI URL |
[27] |
LIANG X, GARSUCH A, NAZAR F . Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed., 2015,54(13):3907-3911.
DOI URL PMID |
[28] |
ZHAO X, LIU M, CHEN Y ,et al. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A, 2015,3(15):7870-7876.
DOI URL |
[29] |
LUO J, TAO X, ZHANG J ,et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 2016,10(2):2491-2499.
DOI URL PMID |
[30] |
LIAN P, DONG Y, WU Z ,et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017,40:1-8.
DOI URL |
[31] |
DONG Y, ZHENG S, QIN J ,et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano, 2018,12(3):2381-2388.
DOI URL PMID |
[32] |
MEDVEDEV A G, MIKHAYLOV A, GRISHANOV A ,et al. GeO2 thin film deposition on graphene oxide by the hydrogen peroxide route: evaluation for lithium-ion battery anode. ACS Appl. Mater. Interfaces, 2017,9(10):9152-9160.
DOI URL PMID |
[33] |
LI D, WANG H, LIU H , et al.A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv. Energy Mater., 2016,6(5):1501666.
DOI URL |
[34] |
GAO C, KIM N, VILLEGAS R ,et al. Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon, 2017,123:433-439.
DOI URL |
[35] |
ZHANG W, PANG H, SUN W ,et al. Metal-organic frameworks derived germanium oxide nanosheets for large reversible Li-ion storage. Electrochem. Commun., 2017,84:80-85.
DOI URL |
[36] |
FULLER C S, SEVERIENS J C . Mobility of impurity ions in germanium and silicon. Phys. Rev., 1954,96(1):21-24.
DOI URL |
[37] |
GRAETZ J, AHN C C, YAZAMI R ,et al. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc., 2004,151(5):A698-A702.
DOI URL |
[38] |
LIU X H, HUANG S, PICRAUX S T , et al.Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett., 2011,11(9):3991-3997.
DOI URL PMID |
[39] |
WANG D, CHANG Y, WANG Q ,et al. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc., 2004,126(37):11602-11611.
DOI URL PMID |
[1] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[2] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[3] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[4] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[5] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[6] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[7] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[8] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[9] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[10] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[11] | DING Haoming, LI Mian, LI Youbing, CHEN Ke, XIAO Yukun, ZHOU Jie, TAO Quanzheng, Johanna Rosen, YIN Hang, BAI Yuelei, ZHANG Bikun, SUN Zhimei, WANG Junjie, ZHANG Yiming, HUANG Zhenying, ZHANG Peigen, SUN Zhengming, HAN Meikang, ZHAO Shuang, WANG Chenxu, HUANG Qing. Progress in Structural Tailoring and Properties of Ternary Layered Ceramics [J]. Journal of Inorganic Materials, 2023, 38(8): 845-884. |
[12] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[13] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[14] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[15] | DING Jianxiang, ZHANG Kaige, LIU Dongming, ZHENG Wei, ZHANG Peigen, SUN Zhengming. Ag-based Electrical Contact Material Reinforced by Ti3AlC2 Ceramic and Its Derivative Ti3C2Tx [J]. Journal of Inorganic Materials, 2022, 37(5): 567-573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||