Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (2): 243-249.DOI: 10.15541/jim20190118
• RESEARCH LETTERS • Previous Articles Next Articles
WU Si1,2,MEI Lei2,HU Kong-Qiu2,CHAI Zhi-Fang2,3,NIE Chang-Ming1(),SHI Wei-Qun2(
)
Received:
2019-03-21
Revised:
2019-04-27
Published:
2020-02-20
Online:
2019-09-20
Supported by:
CLC Number:
WU Si,MEI Lei,HU Kong-Qiu,CHAI Zhi-Fang,NIE Chang-Ming,SHI Wei-Qun. pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers[J]. Journal of Inorganic Materials, 2020, 35(2): 243-249.
Fig. 1 Octa-nuclear uranyl-oxalate network reinforced by U-shaped zwitterionic dicarboxylate linkers (a) two-dimensional coordination network; (b) octa-nuclear uranyl (U8) motif, [(UO2)8O4(μ3-OH)2(μ2-OH)2]4+; (c) U-shaped linker in a space- filling mode overlapped with its molecular structure; (d) U-shaped linker in a stick mode Color codes: uranyl polyhedra in yellow; U-shaped linkers in dark or blue
Fig. 2 Crystal structure of compound 1 (a) ORTEP view of compound 1 with the 30% probability level for thermal ellipsoids; (b) octa-nuclear uranyl (U8) motif in compound 1 showing detailed coordination spheres of all uranyl centers Color codes: uranium atoms in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms pale gray
Fig. 3 Crystal structure of compound 2 (a) ORTEP view of compound 2 with the 30% probability level for thermal ellipsoids; (b) coordination environment of each uranyl center for dimeric uranyl motif; (c-d) crystal lattice stacking for compound 2 viewed for c axis (c) and a axis (d) Color codes: uranium atoms in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms pale gray; the U-shaped linkers in green
Fig. 4 Crystal structure of compound 3 (a) ORTEP view of compound 3 with the 30% probability level for thermal ellipsoids; (b) coordination environments of uranyl center; (c-d) the extended structure based on one-dimensional oxalate-bridging monomeric uranyl chain with (c) or without (d) terminal isonicotinate ligands Color codes: uranium atoms or polyhedras in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms in pale gray
Fig. 5 pH-dependent regulation of hydrothermal reactions of m-Xyl-BPy4CA linkers and uranyl Color codes: uranium polyhedras in yellow; oxygen atoms in red; carbon atoms in gray; nitrogen atoms in blue
Fig. S1 Different optical morphologies of 1 with octa-nuclear uranyl (U8) motifs, 2 with binuclear uranyl (U2) motifs and 3 with monomeric uranyl (U1) motifs
Fig. S5 (a) A nearly planar geometry of U8 motif found in this work; (b) a non-planar U8 motif with cation-cation interactions (CCIs) reported by Loiseau, et al[1]
Fig. S6 (a-b) Eight-connected U8 motif with four oxalate (Ox) and four m-Xyl-BPy4CA (L) moieties extends from four directions through oxalate ligands (a), which thus connecting four adjacent ones with each oxalate ligand going together with a U-shaped bidentate m-Xyl-BPy4CA linker (b); (c) U8-based uranyl-oxalate 2D network (enlarged diagram: a minimum rhombic loop); (d) U8-based uranyl-oxalate 2D network with all the cross-linking m-Xyl-BPy4CA linkers omitted for clarity (enlarged diagram: a minimum rhombic loop in size of 1.193 nm× 1.077 nm)
Fig. S7 Each U8 motif displays a different overall orientation from that of its adjacent U8 with an angle of inclination of 36.6(4)° (a), resulting in a distortion of the rhombic loop (b)
Fig. S9 Two ‘U’-shaped bidentate m-Xyl-BPy4CA ligands located in the cavity of rhombic loop crosslink all the four U8 motifs through coordination bonds and hydrogen bonds (bottom) where one m-Xyl-BPy4CA ligand points upwards (top left) and the other points downwards from the opposite direction (top right)
Fig. S10 Hydrogen bonds between adjacent layers of 2D sheets through U8 motifs that interact with neighboured m-Xyl-BPy4CA from another sheet or m-Xyl-BPy4CA interacting with neighboured uranyl group from another sheet
Fig. S11 Some examples of high-nuclear uranyl motif based on nonlinear multi-topic organic ligands, as suggested by the cases of pentanuclear (U5), hexanuclear (U6) and octanuclear (U8) uranyl motifs derived from sulfobenzoate precursors[2], ortho-position or meta-position aromatic/heteroaromatic dicarboxylate[3,4], calixarene ligand[3] and U-shaped linkers used in this work
Fig. S13 Thermogravimetric analysis (TGA) of compounds 1, where 1 starts to decompose at ~295 ℃, and finally transforms to U3O8 with residual weight of 69.31% (theoretical value: 70.25%)
Fig. S14 Thermogravimetric analysis (TGA) of compounds 2, where 2 starts to decompose at ~233 ℃, and finally transforms to U3O8 with residual weight of 40.95% (theoretical value: 40.20%)
Fig. S15 Fourier transform infrared (IR) spectra of compounds 1 (U8 motif, blue line), 2 (U2 motif, red line) and 3 (U1 motif, black line) with characteristic symmetric ν1vibrations at 915, 911 and 910 nm, respectively
Fig. S16 The Raman spectra of compounds s 1 (U8 motif) and 3 (U1 motif) with characteristic asymmetric ν3 vibrations (1: 833 and 863 cm-1; 3: 829 and 860 cm-1)
Fig. S17 Solid-state fluorescence spectra of compound 1 and 2 as compared to that of uranyl nitrate (UO2(NO3)2): 1, a broad peak ranging from 530 to 550 nm; 2, five main emission bands located at 499, 520, 543, 568 and 596 nm; UO2(NO3)2, 488, 511, 534, 561 and 589 nm
Compound 1 | |||
---|---|---|---|
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.1748(17) | U(2)-O(3) | 0.1752(15) |
U(1)-O(2) | 0.1770(2) | U(2)-O(4) | 0.1751(15) |
U(1)-O(9) | 0.2208(13) | U(2)-O(9) | 0.2275(12) |
U(1)-O(12) | 0.2327(15) | U(2)-O(10) | 0.2193(14) |
U(1)-O(13) | 0.2506(14) | U(2)-O(15) | 0.2466(14) |
U(1)-O(14) | 0.2440(18) | U(2)-O(16) | 0.2578(14) |
U(1)-O(18) | 0.2426(16) | U(2)-O(17) | 0.2380(17) |
U(3)-O(5) | 0.1746(17) | U(4)-O(7) | 0.165(3) |
U(3)-O(6) | 0.178(2) | U(4)-O(8) | 0.171(2) |
U(3)-O(9) | 0.2344(14) | U(4)-O(10) | 0.2200(14) |
U(3)-O(10) | 0.2237(14) | U(4)-O(11) | 0.242(2) |
U(3)-O(11c) | 0.248(2) | U(4)-O(11c) | 0.2461(14) |
U(3)-O(12) | 0.2349(17) | U(4)-O(16) | 0.249(2) |
U(3)-O(19a) | 0.2439(16) | U(4)-O(20d) | 0.2399(16) |
Compound 2 | |||
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.1776(2) | U(1)-O(4) | 0.2364(2) |
U(1)-O(2) | 0.1784(2) | U(1)-O(5a) | 0.2358(2) |
U(1)-O(7) | 0.2325(2) | U(1)-O(7a) | 0.2339(2) |
U(1)-O(1W) | 0.2576(2) | ||
Compound 3 | |||
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.182(3) | U(1)-O(4b) | 0.244(2) |
U(1)-O(1a) | 0.182(3) | U(1)-O(5) | 0.237(2) |
U(1)-O(2) | 0.240(2) | U(1)-O(6) | 0.2307(18) |
U(1)-O(3) | 0.2397(19) |
Compound 1 | |||
---|---|---|---|
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.1748(17) | U(2)-O(3) | 0.1752(15) |
U(1)-O(2) | 0.1770(2) | U(2)-O(4) | 0.1751(15) |
U(1)-O(9) | 0.2208(13) | U(2)-O(9) | 0.2275(12) |
U(1)-O(12) | 0.2327(15) | U(2)-O(10) | 0.2193(14) |
U(1)-O(13) | 0.2506(14) | U(2)-O(15) | 0.2466(14) |
U(1)-O(14) | 0.2440(18) | U(2)-O(16) | 0.2578(14) |
U(1)-O(18) | 0.2426(16) | U(2)-O(17) | 0.2380(17) |
U(3)-O(5) | 0.1746(17) | U(4)-O(7) | 0.165(3) |
U(3)-O(6) | 0.178(2) | U(4)-O(8) | 0.171(2) |
U(3)-O(9) | 0.2344(14) | U(4)-O(10) | 0.2200(14) |
U(3)-O(10) | 0.2237(14) | U(4)-O(11) | 0.242(2) |
U(3)-O(11c) | 0.248(2) | U(4)-O(11c) | 0.2461(14) |
U(3)-O(12) | 0.2349(17) | U(4)-O(16) | 0.249(2) |
U(3)-O(19a) | 0.2439(16) | U(4)-O(20d) | 0.2399(16) |
Compound 2 | |||
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.1776(2) | U(1)-O(4) | 0.2364(2) |
U(1)-O(2) | 0.1784(2) | U(1)-O(5a) | 0.2358(2) |
U(1)-O(7) | 0.2325(2) | U(1)-O(7a) | 0.2339(2) |
U(1)-O(1W) | 0.2576(2) | ||
Compound 3 | |||
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.182(3) | U(1)-O(4b) | 0.244(2) |
U(1)-O(1a) | 0.182(3) | U(1)-O(5) | 0.237(2) |
U(1)-O(2) | 0.240(2) | U(1)-O(6) | 0.2307(18) |
U(1)-O(3) | 0.2397(19) |
Compound 1 | ||||
---|---|---|---|---|
Hydrogen bond | D-H/nm | H··A/nm | D··A/nm | Angle/(°) |
C6-H6···O6 | 0.093 | 0.215 | 0.305 | 165 |
C17-H17···O1 | 0.093 | 0.243 | 0.316 | 135 |
C18-H18···O13 | 0.093 | 0.242 | 0.330 | 159 |
C15-H15···O5 | 0.093 | 0.245 | 0.322 | 141 |
C16-H16A···O3 | 0.097 | 0.242 | 0.321 | 138 |
Compound 2 | ||||
Hydrogen bond | D-H/nm | H···A/nm | D···A/nm | Angle/(°) |
O7-H7···O10 | 0.073 | 0.216 | 0.285 | 161 |
C16-H16···O10 | 0.093 | 0.258 | 0.324 | 128 |
C15-H16···O9 | 0.093 | 0.298 | 0.358 | 123 |
Compound 1 | ||||
---|---|---|---|---|
Hydrogen bond | D-H/nm | H··A/nm | D··A/nm | Angle/(°) |
C6-H6···O6 | 0.093 | 0.215 | 0.305 | 165 |
C17-H17···O1 | 0.093 | 0.243 | 0.316 | 135 |
C18-H18···O13 | 0.093 | 0.242 | 0.330 | 159 |
C15-H15···O5 | 0.093 | 0.245 | 0.322 | 141 |
C16-H16A···O3 | 0.097 | 0.242 | 0.321 | 138 |
Compound 2 | ||||
Hydrogen bond | D-H/nm | H···A/nm | D···A/nm | Angle/(°) |
O7-H7···O10 | 0.073 | 0.216 | 0.285 | 161 |
C16-H16···O10 | 0.093 | 0.258 | 0.324 | 128 |
C15-H16···O9 | 0.093 | 0.298 | 0.358 | 123 |
Compound 1 | Compound 2 | Compound 3 | |
---|---|---|---|
Formula | C22H16N2O20U4 | C40H38N6O22U2 | C8H5NO8U |
Formula weight | 1580.49 | 1430.82 | 481.16 |
Crystal system | monoclinic | triclinic | orthorhombic |
Space group | P21/c | P-1 | Ibam |
a/nm | 1.15944(14) | 0.98277(3) | 2.6039(4) |
b/nm | 1.9854(3) | 1.05830(4) | 1.17462(13) |
c/nm | 1.5002(2) | 1.15097(4) | 0.91646(17) |
α/(º) | 90 | 82.951(2) | 90 |
β/(º) | 105.390(3) | 88.168(2) | 90 |
γ/(º) | 90 | 66.735(2) | 90 |
V/nm3 | 3.3296(8) | 1.09126(7) | 2.8031(7) |
Z | 4 | 1 | 8 |
T/K | 296 | 297 | 293 |
F(000) | 2760 | 680 | 1728 |
Dc/(g·cm-3) | 3.153 | 2.177 | 2.280 |
μ/mm-1 | a 19.480 | b 7.507 | c 32.914 |
Rint | 0.073 | 0.028 | 0.088 |
R1, wR2 (all data) | 0.0646, 0.1536 | 0.0227, 0.0491 | 0.0755, 0.2833 |
Compound 1 | Compound 2 | Compound 3 | |
---|---|---|---|
Formula | C22H16N2O20U4 | C40H38N6O22U2 | C8H5NO8U |
Formula weight | 1580.49 | 1430.82 | 481.16 |
Crystal system | monoclinic | triclinic | orthorhombic |
Space group | P21/c | P-1 | Ibam |
a/nm | 1.15944(14) | 0.98277(3) | 2.6039(4) |
b/nm | 1.9854(3) | 1.05830(4) | 1.17462(13) |
c/nm | 1.5002(2) | 1.15097(4) | 0.91646(17) |
α/(º) | 90 | 82.951(2) | 90 |
β/(º) | 105.390(3) | 88.168(2) | 90 |
γ/(º) | 90 | 66.735(2) | 90 |
V/nm3 | 3.3296(8) | 1.09126(7) | 2.8031(7) |
Z | 4 | 1 | 8 |
T/K | 296 | 297 | 293 |
F(000) | 2760 | 680 | 1728 |
Dc/(g·cm-3) | 3.153 | 2.177 | 2.280 |
μ/mm-1 | a 19.480 | b 7.507 | c 32.914 |
Rint | 0.073 | 0.028 | 0.088 |
R1, wR2 (all data) | 0.0646, 0.1536 | 0.0227, 0.0491 | 0.0755, 0.2833 |
[1] | ALTMAIER M, GAONA X, FANGHANEL T , et al. Recent advances in aqueous actinide chemistry and thermodynamics. Chemical Reviews, 2013,113(2):901-943. |
[2] | JONES M B, GAUNT A J . Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chemical Reviews, 2013,113(2):1137-1198. |
[3] | WANG K X, CHEN J S . Extended structures and physicochemical properties of uranyl-organic compounds. Accounts of Chemical Research, 2011,44(7):531-540. |
[4] | ANDREWS M B, CAHILL C L . Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chemical Reviews, 2013,113(2):1121-1136. |
[5] | YANG W T, PARKER T G, SUN Z M , et al. Structural chemistry of uranium phosphonates. Coordination Chemistry Reviews, 2015,303(1):86-109. |
[6] | LOISEAU T, MIHALCEA I, HENRY N , et al. The crystal chemistry of uranium carboxylates. Coordination Chemistry Reviews, 2014,266(35):69-109. |
[7] | RAI D, FELMY A R, RYAN J L , et al. Uranium (IV) hydrolysis constants and solubility product of UO2·xH2O(am). Inorganic Chemistry, 1990,29(2):260-264. |
[8] | AHRLAND S . On the complex chemistry of the uranyl ion Ι. The hydrolysis of the 6-valent uranium in aqueous solutions. Acta Chemica Scandinavica, 1949,3(4):374-400. |
[9] | ZANONATO P, DI BERNARDO P, BISMONDO A , et al. Hydrolysis of uranium (VI) at variable temperatures (10-85 ℃). Journal of the American Chemical Society, 2004,126(17):5515-5522. |
[10] | SALMON L, THUERY P, EPHRITIKHINE M , et al. Crystal structure of the first octanuclear uranium (IV) complex with compartmental schiff base ligands. Polyhedron, 2004,23(4):623-627. |
[11] | MIHALCEA I, HENRY N, CLAVIER N , et al. Occurence of an octanuclear motif of uranyl isophthalate with cation-cation interactions through edge-sharing connection mode. Inorganic Chemistry, 2011,50(13):6243-6249. |
[12] | PASQUALE S, SATTIN S, ESCUDERO-ADAN E C , et al. Giant regular polyhedra from calixarene carboxylates and uranyl. Nature Communications, 2012,3(1):785. |
[13] | THUERY P . A highly adjustable coordination system: nanotubular and molecular cage species in uranyl ion complexes with kemp's triacid. Crystal Growth & Design, 2014,14(3):901-904. |
[14] | WANG L H, SHANG R, ZHENG Z , et al. Two systems of [DabcoH2]2+/[PipH2]2+-uranyl-oxalate showing reversible crystal-to- crystal transformations controlled by the diammonium/uranyl/oxalate ratios in aqueous solutions ([DabcoH2]2+=1,4-diazabicyclo- [2.2.2]-octaneH2 and [PipH2]2+ = PiperazineH2). Crystal Growth & Design, 2013,13(6):2597-2606. |
[15] | CHAPELET-ARAB B, NOWOGROCKI G, ABRAHAM E , et al. Crystal structure of new uranyl oxalates (NH4)2[UO2(C2O4)·2H2O] and (NH4)2-x(N2H5)x[UO2(C2O4)3]·3H2O (x=0 and x=1). Comparison with other uranyl oxalates. Radiochimica Acta, 2005,93(5):279-285. |
[16] | GIESTING P A, PORTER N J, BURNS P C , et al. A series of sheet-structured alkali metal uranyl oxalate hydrates: structures and IR spectra. Zeitschrift für Kristallographie, 2006,221(8):589-599. |
[17] | GIESTING P A, PORTER N J, BURNS P C , et al. Uranyl oxalate hydrates: structures and IR spectra. Zeitschrift für Kristallographie, 2006,221(4):252-259. |
[18] | DUVIEUBOURG L, NOWOGROCKI G, ABRAHAM F , et al. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2 (C2O4)(OH)2(H2O)2] and [(UO2)2((C2O4)(OH)2(H2O)2]·H2O. Journal of Solid State Chemistry, 2005,178(11):3437-3444. |
[19] | THUERY P . Reaction of uranyl nitrate with carboxylic diacids under hydrothermal conditions. Crystal structure of complexes with L(+)-tartaric and oxalic acids. Polyhedron, 2007,26(1):101-106. |
[20] | VOLOGZHANINA A V, SEREZHKINA L B, NEKLYUDOVA N A , et al. Synthesis and characterisation of a trinuclear uranyl complex: crystal structure of (CN3H6)5[(UO2)3O(OH)2(CH3COO)(C2O4)3]. Inorganica Chimica Acta, 2009,362(14):4921-4925. |
[21] | CHUGH C A, SHARMA A, SHARMA A , et al. Kinetics and mechanism of thermal decomposition of uranyl oxalate. Asian Journal of Chemistry, 2011,23(4):1865-1866. |
[22] | BARTLETT J R, COONEY R P , et al. On the determination of uranium oxygen bond lengths in dioxouranium (VI) compounds by raman-spectroscopy. Journal of Molecular Structure, 1989,193(1):295-300. |
[23] | BRACHMANN A, GEIPEL G, BERNHARD G , et al. Study of uranyl (VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochimica Acta, 2002,90(3):147-153. |
[24] | MEI L, WANG C Z, ZHU L Z , et al. Exploring new assembly modes of uranyl terephthalate: templated syntheses and structural regulation of a series of rare 2d→3d polycatenated frameworks. Inorganic Chemistry, 2017,56(14):7694-7706. |
[25] | NATRAJAN L S . Developments in the photophysics and photochemistry of actinide ions and their coordination compounds. Coordination Chemistry Reviews, 2012,256(15/16):1583-1603. |
[26] | THUERY P, HARROWFIELD J . Solvent effects in solvo-hydrothermal synthesis of uranyl ion complexes with 1,3-adamantanediacetate. CrystEngComm, 2015,17(21):4006-4018. |
[27] | THUERY P, HARROWFIELD J . Structural variations in the uranyl/4,4'-biphenyldicarboxylate system. rare examples of 2d→3d polycatenated uranyl-organic networks. Inorganic Chemistry, 2015,54(16):8093-8102. |
[28] | THUERY P, RIVIERE E, HARROWFIELD J , et al. Uranyl and uranyl-3d block cation complexes with 1,3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties. Inorganic Chemistry, 2015,54(6):2838-2850. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||