Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (9): 909-917.DOI: 10.15541/jim20180587
WANG Yang,ZHU Jia-Qi(),HU Zhong-Bo,DAI Bing
Received:
2018-12-17
Revised:
2019-02-12
Published:
2019-09-20
Online:
2019-05-29
Supported by:
CLC Number:
WANG Yang, ZHU Jia-Qi, HU Zhong-Bo, DAI Bing. Heteroepitaxial Growth of Single Crystal Diamond Films on Iridium: Procedure and Mechanism[J]. Journal of Inorganic Materials, 2019, 34(9): 909-917.
Fig. 1 Heteroepitaxial diamond growth on different substrate materials[32,33,34] (a) c-BN(001); (b) c-BN(111); (c) Al2O3(0001); (d) Ni(001); (e) Ni(111); (f) Pt(111); (g) Si(001); (h) 4H-SiC(001); (i) Ir(001)
Bottom substrate | Structure | Thickness | Quality | Ref. |
---|---|---|---|---|
Metal oxide (MO) | MgO(100)/Ir(100)/diamond(100) | 50 μm | tilt0.16° | [42, 47] |
SrTiO3(100)/Ir(100)/diamond(100) | 34 μm | tilt0.17° twist0.38° | [48] | |
Al2O3(11ˉ20)/Ir(100)/diamond(100) | 38 μm | tilt~0.30° | [49] | |
Si | Si(100)/MgO(100)/Ir(100)/diamond(100) | 8 μm | tilt0.88° twist4.13° | [50] |
Si(100)/YSZ(100)/Ir(100)/diamond(100) | 1.60 mm | tilt0.18° twist0.29° | [16, 51] | |
Si(100)/SrTiO3(100)/Ir(100)/diamond(100) | 350 μm | tilt0.38° twist0.98° | [52] | |
Si(100)/CaF2(100)/Ir(100)/diamond(100) | - | tilt0.61° | [53] |
Table 1 Quality of diamond grown on different layer structures based on Ir(100) substrate
Bottom substrate | Structure | Thickness | Quality | Ref. |
---|---|---|---|---|
Metal oxide (MO) | MgO(100)/Ir(100)/diamond(100) | 50 μm | tilt0.16° | [42, 47] |
SrTiO3(100)/Ir(100)/diamond(100) | 34 μm | tilt0.17° twist0.38° | [48] | |
Al2O3(11ˉ20)/Ir(100)/diamond(100) | 38 μm | tilt~0.30° | [49] | |
Si | Si(100)/MgO(100)/Ir(100)/diamond(100) | 8 μm | tilt0.88° twist4.13° | [50] |
Si(100)/YSZ(100)/Ir(100)/diamond(100) | 1.60 mm | tilt0.18° twist0.29° | [16, 51] | |
Si(100)/SrTiO3(100)/Ir(100)/diamond(100) | 350 μm | tilt0.38° twist0.98° | [52] | |
Si(100)/CaF2(100)/Ir(100)/diamond(100) | - | tilt0.61° | [53] |
Nucleation process | Primary growth | Rapid growth | |||
---|---|---|---|---|---|
H2 cleaning | H2/CH4 stabilization | BEN | |||
CH4/% | 0(Pure H2) | 4 | 4 | 0.6 | 5 |
Pressure/(×103, Pa) | 2 | 2 | 2 | 2 | 20 |
Power/W | 400 | 400 | 400 | 400 | 3000 |
Bias voltage/V | 0 | 0 | -307 | 0 | 0 |
Substrate temperature/℃ | (600±50) | (650±50) | (700±50) | (600±50) | (880±30) |
Duration/min | 10 | 10 | 40-45 | 30 | Up to 48 h |
Table 2 Experimental conditions for Bias Enhanced Nucleation (BEN) and growth of diamond on iridium[59]
Nucleation process | Primary growth | Rapid growth | |||
---|---|---|---|---|---|
H2 cleaning | H2/CH4 stabilization | BEN | |||
CH4/% | 0(Pure H2) | 4 | 4 | 0.6 | 5 |
Pressure/(×103, Pa) | 2 | 2 | 2 | 2 | 20 |
Power/W | 400 | 400 | 400 | 400 | 3000 |
Bias voltage/V | 0 | 0 | -307 | 0 | 0 |
Substrate temperature/℃ | (600±50) | (650±50) | (700±50) | (600±50) | (880±30) |
Duration/min | 10 | 10 | 40-45 | 30 | Up to 48 h |
Fig. 3 Procedure of single diamond eptaxial growth on Ir substrate[16, 60-64] (a) Preparation of substrate; (b) Bias Enhanced Nucleation (BEN) process; (c) Oriented growth; (d) Patterned growth; (e) Heteroepitaxial diamond MS: Megnetron Sputtering; PLD: Pulsed Laser Deposition; MBE: Molecular Beam Epitaxy
Fig. 5 (a-g) Sequence of TEM images showing typical dynamics of the attachment process, with surfaces of particles I and II enabling transient contact at many points and orientations before finally attaching and growing together; (h) High-resolution image of interface in (g)[77]
[1] | ZOU L, ZHOU M . Experimental investigation and numerical simulation on interfacial carbon diffusion of diamond tool and ferrous metals. Journal of Wuhan University of Technology-Materials Science Edition, 2016,31(2):307-314. |
[2] | ZHANG C, WANG R, CAI Z ,et al. Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles. Journal of Materials Science Materials in Electronics, 2015,26(1):185-190. |
[3] | NAZARI M, HANCOCK B L, ANDERSON J ,et al. Optical characterization and thermal properties of CVD diamond films for integration with power electronics. Solid-State Electronics, 2017,136(10):12-17. |
[4] | ZHU D, BANDY J A, LI S ,et al. Amino-terminated diamond surfaces: photoelectron emission and photocatalytic properties. Surface Science, 2016,650(8):295-301. |
[5] | SHEN H J, WANG L J, HUANG J ,et al. Research for (100)-oriented diamond film radiation detector. Journal of Inorganic Materials, 2009,24(6):1254-1258. |
[6] | WILLIAMS T, MARTENS A, CASSOU K ,et al. Novel applications and future perspectives of a fast diamond gamma ray detector. Nuclear Instruments and Methods in Physics Research A, 2017,845(5):199-202. |
[7] | ZHANG R, ZHAO W S, YIN W Y ,et al. Impacts of diamond heat spreader on the thermo-mechanical characteristics of high-power AlGaN/GaN HEMTs. Diamond and Related Materials, 2015,52(2):25-31. |
[8] | DING M Q, LI L, DU Y ,et al. Development of an extremely thin-diamond window for terahertz traveling wave tubes. Diamond and Related Materials, 2017,79(10):173-178. |
[9] | WANG J J, HE Z Z, YU C ,et al. Comparison of field-effect transistors on polycrystalline and single-crystal diamonds. Diamond and Related Materials, 2016,70(11):114-117. |
[10] | KASU M . Diamond epitaxy: basics and applications. Progress in Crystal Growth and Characterization of Materials, 2016,62(2):317-328. |
[11] | KUPRIYANOV I N, KHOKHRYAKOV A F, BORZDOV Y M ,et al. HPHT growth and characterization of diamond from a copper- carbon system. Diamond and Related Materials, 2016,69(10):198-206. |
[12] | XIAO H Y, LI S S, QIN Y K ,et al. Studies on synthesis of boron- doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014,63(19):198101. |
[13] | MOKUNO Y, CHAYAHARA A, YAMADA H ,et al. Improving purity and size of single-crystal diamond plates produced by high-rate CVD growth and lift-off process using ion implantation. Diamond and Related Materials, 2009,18(10):1258-1261. |
[14] | YAMADA H, CHAYAHARA A, MOKUNO Y ,et al. Effects of crystallographic orientation on the homoepitaxial overgrowth on tiled single crystal diamond clones. Diamond and Related Materials, 2015,57(8):17-21. |
[15] | YAMADA H, CHAYAHARA A, MOKUNO Y ,et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single- crystal diamond. Diamond and Related Materials, 2013,33(3):27-31. |
[16] | SCHRECK M, GSELL S, BRESCIA R , et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Scientific Reports, 2017, 7: 44462-1-3. |
[17] | 朱金凤 . 微波CVD法制备高质量金刚石颗粒. 武汉: 武汉工程大学硕士学位论文, 2013. |
[18] | 张景文, 陈旭东, 王进军 , 等. 一种基于异质外延生长单晶金刚石的方法. 中国, C30B25/18, CN201710633557. 2017.07.28. |
[19] | LI Y F, SHE J M, SU J J ,et al. Heteroepitaxial nucleation of diamond on Ir(100)/MgO(100) substrate by bias enhanced microwave plasma chemical vapor deposition method. Journal of Synthetic Crystals, 2015,44(4):896-901. |
[20] | 王杨, 代兵, 朱嘉琦 , 等. 一种异质外延生长大尺寸单晶金刚石的衬底及其制备方法. 中国, C30B29/04, CN201410794743.0. 2015.04.08. |
[21] | SARTORI A, FISCHER M, GSELL S ,et al. In situ boron doping during heteroepitaxial growth of diamond on Ir/YSZ/Si. Physica Status Solidi A-Applications and Materials Science, 2012,209(9):1643-1650. |
[22] | LIAO K J, WANG W L, FENG B . Effect of nucleation rate on heteroepitaxial diamond growth on Si (100) via electron-emission- enhanced nucleation by hot filament chemical vapor deposition. Physica Status Solidi A-Applications and Materials Science, 1998,167(1):117-123. |
[23] | ZHAO S, HUANG J, ZHOU X ,et al. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate. Applied Surface Science, 2018,434(3):260-264. |
[24] | LIU C, WANG J H, WENG J . Preparation of the high-quality highly (100) oriented diamond films with controllable growth. Acta Physica Sinica, 2015,64(2):028101. |
[25] | GAO F, JIA X P, MA H A ,et al. Hetero-epitaxial diamond single crystal growth on surface of cBN single crystals at high pressure and high temperature. Chinese Physics Letters, 2008,25(6):2273-2276. |
[26] | WANG C X, GAO C X, ZHANG T C . Preparation of p-n junction diode by B-doped diamond film grown on Si-doped c-BN. Chinese Physics Letters, 2002,19(10):1513-1515. |
[27] | HAYASHI Y, MATSUSHITA Y, SOGA T ,et al. The formation of a (111) texture of the diamond film on Pt/TiO2/SiOx/Si substrate by microwave plasma chemical vapor deposition. Diamond and Related Materials, 2002,11(3-6):499-503. |
[28] | SITAR Z, LIU W, YANG P C ,et al. Heteroepitaxial nucleation of diamond on nickel. Diamond and Related Materials, 1998,7(2):276-282. |
[29] | ITO S, NAGAI M, MATSUMOTO T ,et al. Self-separation of freestanding diamond films using graphite interlayers precipitated from C-dissolved Ni substrates. Journal of Crystal Growth, 2017,470(14):104-107. |
[30] | HE X C, SHEN H S, ZHANG Z M ,et al. Growth of CVD heteroepitaxial diamond on silicon (001) and its electronic properties. Diamond and Related Materials, 2000,9(9):1626-1631. |
[31] | CHANG L, LIN T S, CHEN J L ,et al. Transmission electron microscopy study of diamond nucleation on 6HSiC single crystal with possibility of epitaxy. Applied Physics Letters, 1993,62(26):3444-3446. |
[32] | SCHRECK M . CVD Diamond for Electronic Devices and Sensors. Chichester: Wiley, 2009: 125-161. |
[33] | MOORE E, JARRELL J, CAO L . Heteroepitaxial diamond growth on 4H-SiC using microwave plasma chemical vapor deposition. Heliyon, 2017,3(9):e00404. |
[34] | SCHRECK M, SCHURY A, HÖRMANN F , et al. Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: experimental results and numerical simulations. Journal of Applied Physics, 2002,91(2):676-685. |
[35] | VERSTRAETE M J, CHARLIER J C . Why is iridium the best substrate for single crystal diamond growth? Applied Physics Letters, 2005,86(191):191917. |
[36] | 野口仁 . 金刚石膜的制造方法. 日本, C30B25/10, CN201510627462.0. 2015.12.23. |
[37] | MARTOVITSKY V P, EVLASHIN S A, SUETIN N V , et al. Heteroepitaxial Ir layers on diamond. Journal of Physics D-Applied Physics, 2011, 44(21): 21540-1-6. |
[38] | MEYER F, OESER S, GRAFF A ,et al. Effect of substrate bias on the growth behavior of iridium on A-plane sapphire using radio frequency sputtering at low temperatures. Thin Solid Films, 2018,650(3):65-70. |
[39] | FAN L, JACOBS C B, ROULEAU C M ,et al. Stabilizing Ir(001) epitaxy on yttria-stabilized zirconia using a thin Ir seed layer grown by pulsed laser deposition. Crystal Growth & Design, 2017,17(1):89-94. |
[40] | GSELL S, FISCHER M, BAUER T ,et al. Yttria-stabilized zirconia films of different composition as buffer layers for the deposition of epitaxial diamond/Ir layers on Si(001). Diamond and Related Materials, 2006,15(4):479-485. |
[41] | ARNAULT J C, SCHULL G, MERMOUX M ,et al. BEN-HFCVD effects on diamond nucleation on iridium: a Raman imaging study. Physica Status Solidi A-Applications and Materials Science, 2005,202(11):2073-2078. |
[42] | TSUBOTA T, OHTA M, KUSAKABE K ,et al. Heteroepitaxial growth of diamond on an iridium(100) substrate using microwave plasma-assisted chemical vapor deposition. Diamond and Related Materials, 2000,9(7):1380-1387. |
[43] | LEE K H, SAADA S, ARNAULT J ,et al. Epitaxy of iridium on SrTiO3/Si(001): a promising scalable substrate for diamond heteroepitaxy. Diamond and Related Materials, 2016,66(6):67-76. |
[44] | CHEN Y C, CHANG L . Chemical vapor deposition of diamond on an adamantane-coated sapphire substrate. RSC Advances, 2014,4(36):18945-18950. |
[45] | GSELL S, BAUER T, GOLDFUß J ,et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers. Applied Physics Letters, 2004,84(22):4541-4543. |
[46] | GALLHEBER B C, FISCHER M, KLEIN O , et al. Formation of huge in-plane anisotropy of intrinsic stress by off-axis growth of diamond. Applied Physics Letters, 2016,109(14):14190-1-7. |
[47] | ICHIKAWA K, KODAMA H, SUZUKI K ,et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching. Thin Solid Films, 2016,600(2):142-145. |
[48] | SCHRECK M, HÖRMANN F, ROLL H , et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: a route for the realization of single-crystal diamond films. Applied Physics Letters, 2001,78(2):192-194. |
[49] | SAMOTO A, ITO S, HOTTA A ,et al. Investigation of heterostructure between diamond and iridium on sapphire. Diamond and Related Materials, 2008,2(17):1039-1044. |
[50] | GSELL S, SCHRECK M, BRESCIA R ,et al. Iridium on biaxially textured oxide templates: a concept to grow single crystals on arbitrary substrates. Japanese Journal of Applied Physics, 2008,47(12):8925-8927. |
[51] | STEHL C, SCHRECK M, FISCHER M ,et al. Thermal diffusivity of heteroepitaxial diamond films: experimental setup and measurements. Diamond and Related Materials, 2010,2(19):787-791. |
[52] | BAUER T, GSELL S, SCHRECK M ,et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers. Diamond and Related Materials, 2005,14(3-7):314-317. |
[53] | LEE C H, QI J, LEE S T ,et al. Epitaxial diamond on a Si/CaF2/Ir substrate. Diamond and Related Materials, 2003,12(8):1335-1339. |
[54] | BRESCIA R, SCHRECK M, GSELL S ,et al. Transmission electron microscopy study of the very early stages of diamond growth on iridium. Diamond and Related Materials, 2008,17(7):1045-1050. |
[55] | GSELL S, SCHRECK M, BENSTETTER G ,et al. Combined AFM-SEM study of the diamond nucleation layer on Ir(001). Diamond and Related Materials, 2007,16(4):665-670. |
[56] | REGMI M, MORE K, ERES G . A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition. Diamond and Related Materials, 2012,23(3):28-33. |
[57] | WHITFIELD M D, JACKMANA R B, FOORD J S . Spatially resolved optical emission spectroscopy of the secondary glow observed during biasing of a microwave plasma. Vacuum, 2000,56(1):15-23. |
[58] | KÁTAI S Z, KOVÁTS A, MAROS I ,et al. Ion energy distributions and their evolution during bias-enhanced nucleation of chemical vapor deposition of diamond. Diamond and Related Materials, 2000,9(3):317-321. |
[59] | BENSALAH H, STENGER I, SAKR G ,et al. Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diamond and Related Materials, 2016,66(6):188-195. |
[60] | DONG H K, PARK J, ZHEN L ,et al. 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic- oriented attachment. Advanced Materials, 2017,29(23):1606831. |
[61] | MICHLER J, KAENEL Y V, STIEGLER J ,et al. Complementary application of electron microscopy and micro-Raman spectroscopy for microstructure, stress, and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films. Journal of Applied Physics, 1998,83(187):187-197. |
[62] | ANDO A, KAMANO T, SUZUKI K ,et al. Epitaxial lateral overgrowth of diamonds on iridium by patterned nucleation and growth method. Japanese Journal of Applied Physics, 2012,51(9):090101. |
[63] | WANG Y F, CHANG X H, LIU Z C ,et al. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate. Journal of Crystal Growth, 2018,489(5):51-56. |
[64] | YOSHIKAWA T, KODAMA H, KONO S ,et al. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth. Thin Solid Films, 2015,594(11):120-128. |
[65] | CHAVANNE A, ARNAULT J C, BARJON J ,et al. Bias-enhanced nucleation of diamond on iridium: a comprehensive study of the first stages by sequential surface analysis. Surface Science, 2011,605(5):564-569. |
[66] | HÖRMANN F, SCHRECK M, STRITZKER B . First stages of diamond nucleation on iridium buffer layers. Diamond and Related Materials, 2001,10(9):1617-1621. |
[67] | CHAVANNE A, BARJONB J, VILQUIN B . Surface investigations on different nucleation pathways for diamond heteroepitaxial growth on iridium. Diamond and Related Materials, 2012,22(2):52-58. |
[68] | CHAVANNE A, ARNAULT J C, BARJON J ,et al. Effect of bias voltage on diamond nucleation on iridium during BEN. Applied Physics Letters, 2010,1292(1):137-140. |
[69] | SCHRECK M, GSELL S, BRESCIA R ,et al. Diamond nucleation on iridium: local variations of structure and density within the BEN layer. Diamond and Related Materials, 2009,18(2):107-112. |
[70] | VAISSIEREA N, SAADAA S, BOUTTEMY M ,et al. Heteroepitaxial diamond on iridium: new insights on domain formation. Diamond and Related Materials, 2013,36(6):16-25. |
[71] | AREND C, APPEL P, BECKER J N ,et al. Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers. Applied Physics Letters, 2016,108(6):127-159. |
[72] | SCHRECK M, BAUER T, GSELL S ,et al. Domain formation in diamond nucleation on iridium. Diamond and Related Materials, 2003,12(3):262-267. |
[73] | TCHOLAKOVA S, MUSTAN F, PAGUREVA N ,et al. Role of surface properties for the kinetics of bubble Ostwald ripening in saponin-stabilized foams. Colloid Surfaces A-Physicochemical and Engineering Aspects, 2017,534(12):16-25. |
[74] | HAZARIKA S, MOHANTA D . Oriented attachment (OA) mediated characteristic growth of Gd2O3 nanorods from nanoparticle seeds. Journal of Rare Earths, 2016,34(2):158-164. |
[75] | CHEN X C, IM S H, KIM J ,et al. Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect. Journal of Crystal Growth, 2018,483(2):102-109. |
[76] | FICHTHORN K A . Atomic-scale aspects of oriented attachment. Chemical Engineering Science, 2015,121(1):10-15. |
[77] | LI D S, NIELSEN M H, LEE J R I , et al. Direction-specific interactions control crystal growth by oriented attachment. Science, 2012,336(6084):1014-1018. |
[78] | DIDEIKIN A T, EIDELMAN E D, KIDALOV S V ,et al. Oriented- attachment growth of diamond single crystal from detonation nanodiamonds. Diamond and Related Materials, 2017,75(5):85-90. |
[79] | PODMANICZKY F, TÓTH G I, TEGZE G , et al. Phase-field crystal modeling of heteroepitaxy and exotic modes of crystal nucleation. Journal of Crystal Growth, 2017,457(1):24-31. |
[80] | BOBYLEV S V, GUTKIN M Y, OVID'KO I A . Decay of low-angle tilt boundaries in deformed nanocrystalline materials. Journal of Physics D-Applied Physics, 2004,37(2):269-272. |
[81] | KIM D, JEONG W S, KO H ,et al. Pretreatment by selective ion-implantation for epitaxial lateral overgrowth of GaN on patterned sapphire substrate. Thin Solid Films, 2017,641(11):2-7. |
[82] | ICHIKAWA K, KODAMA H, SUZUKI K ,et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir. Diamond and Related Materials, 2017,72(2):114-118. |
[83] | TANG Y H, GOLDING B . Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth. Applied Physics Letters, 2016,108(5):052101. |
[84] | AIDA H, KIM S W, IKEJIRI K ,et al. Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: detailed study on the growth scheme of continuous diamond layers on diamond microneedles. Diamond and Related Materials, 2017,75(5):34-38. |
[85] | ICHIKAWA K, KURONE K, KODAMA H ,et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diamond and Related Materials, 2019, . |
[86] | BAUER T, SCHRECK M, STRITZKER B . Epitaxial lateral overgrowth (ELO) of homoepitaxial. Diamond and Related Materials, 2007,16(4):711-717. |
[87] | AIDA H, IKEJIRI K, KIM S W ,et al. Overgrowth of diamond layers on diamond microneedles: new concept for freestanding diamond substrate by heteroepitaxy. Diamond and Related Materials, 2016,66(6):77-82. |
[88] | AIDA H, KIM S W, IKEJIRI K ,et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles. Applied Physics Express, 2016,9(3):035504. |
[89] | SHU G Y, DAI B, RALCHENKO V G ,et al. Epitaxial growth of mosaic diamond: mapping of stress and defects in crystal junction with a confocal Raman spectroscopy. Journal of Crystal Growth, 2017,463(4):19-26. |
[90] | KLEIN O, MAYR M, FISCHER M ,et al. Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films. Diamond and Related Materials, 2016,65(5):53-58. |
[91] | SCHRECK M, HÖRMANN F, ROLL H ,et al. Heteroepitaxial diamond films on silicon substrates and on iridium layers: analogies and differences in nucleation and growth. New Diamond & Frontier Carbon Technology: An International Journal on New Diamond Frontier Carbon & Related Materials, 2001,11(3):189-205. |
[92] | STEHL C, FISCHER M, GSELL S ,et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Applied Physics Letters, 2013,103(15):151905. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||