Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (2): 162-172.DOI: 10.15541/jim20170346
• Orginal Article • Previous Articles Next Articles
DONG Li-Ying, ZHANG Yong-Gang, ZHU Ying-Jie
Received:
2017-07-20
Revised:
2017-10-25
Published:
2018-02-26
Online:
2018-01-26
Supported by:
CLC Number:
DONG Li-Ying, ZHANG Yong-Gang, ZHU Ying-Jie. A New Kind of Fire-resistant Inorganic Paper[J]. Journal of Inorganic Materials, 2018, 33(2): 162-172.
Fig. 1 Highly flexible ultralong hydroxyapatite nanowires prepared by the calcium oleate precursor solvothermal method[12] (a, b) SEM micrographs; (c) TEM micrograph with inset showing a SAED (selected-area electron diffraction) pattern of a single ultralong hydroxyapatite nanowire; (d) The formation of a long fiber with a length of ~28 mm from an ethanol dispersion of ultralong hydroxyapatite nanowires
Fig. 2 (a) A digital image of the new kind of highly flexible fire-resistant paper made from ultralong hydroxyapatite nanowires; (b) English words and Chinese characters with different colors printed on the fire-resistant ultralong hydroxyapatite nanowire paper by using a commercial ink-jet printer[12]
Fig. 4 Illustration of the excellent fire-resistance and high- temperature resistance of the as-prepared highly flexible fire- resistant paper based on ultralong hydroxyapatite nanowires, and the commercial cellulose paper is used for comparison[12]
Fig. 6 Liquid repellency tests for a new kind of fire-resistant superhydrophobic layered paper based on ultralong hydroxyapatite nanowires and its excellent thermal stability[38]
[1] | 法国国家图书馆遭遇水灾一万余部书籍被淹[EB/OL]. [2017- 10-25]. . |
[2] | 俄图书馆失火百万史料焚毁[EB/OL]. [2017-10-25]. . |
[3] | CHEN F, ZHU Y J.Multifunctional calcium phosphate nanostructured materials and biomedical applications.Current Nanoscience, 2014, 10(4): 465-485. |
[4] | HUI J F, WANG X.Hydroxyapatite nanocrystals: colloidal chemistry, assembly and their biological applications.Inorganic Chemistry Frontiers, 2014, 1(3): 215-225. |
[5] | ŠUPOVÁ M.Substituted hydroxyapatites for biomedical applications: a review.Ceramics International, 2015, 41(8): 9203-9231. |
[6] | HAIDER A, HAIDER S, HAN S S, et al.Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review.RSC Advances, 2017, 7(13): 7442-7458. |
[7] | CHEN F, HUANG P, ZHU Y J, et al.The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.Biomaterials, 2011, 32(34): 9031-9039. |
[8] | LIU C S, HUANG Y, CUI J H.Kinetics of hydroxyapatite precipitation at pH 10 to 11.Biomaterials, 2001, 22(4): 301-306. |
[9] | ZHANG C M, LI C X, HUANG S S, et al.Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials, 2010, 31(12): 3374-3383. |
[10] | ZHU Y J, CHEN F.Microwave-assisted synthesis of calcium phosphate nanostructured materials in liquid phase.Progress in Chemistry, 2015, 27(5): 459-471. |
[11] | CHENG Y, WANG M, WANG X X, et al.Investigation on in vitro osteogenic properties of multiple-doped hydroxyapatite with natural bone content.Journal of Inorganic Materials, 2016, 31(12): 1341-1346. |
[12] | LU B Q, ZHU Y J, CHEN F.Highly flexible and noninflammable inorganic hydroxyapatite paper.Chemistry-A European Journal, 2014, 20(5): 1242-1246. |
[13] | KANDORI K, KURODA T, TOGASHI S, et al.Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.Journal of Physical Chemistry B, 2011, 115(4): 653-659. |
[14] | ANWAR A, REHMAN I U, DARR J A.Low-temperature synthesis and surface modification of high surface area calcium hydroxyapatite nanorods incorporating organofunctionalized surfaces.Journal of Physical Chemistry C, 2016, 120(51): 29069-29076. |
[15] | CHEN H F, SUN K, TANG Z Y, et al.Synthesis of fluorapatite nanorods and nanowires by direct precipitation from solution.Crystal Growth & Design, 2006, 6(6): 1504-1508. |
[16] | LV B Y, ZHAO L S, PU Y, et al.Facile preparation of controllable- aspect-ratio hydroxyapatite nanorods with high-gravity technology for bone tissue engineering. Industrial & Engineering Chemistry Research, 2017, 56(11): 2976-2983. |
[17] | ZHAO X Y, ZHU Y J, LU B Q, et al.Hydrothermal synthesis of hydroxyapatite nanorods using pyridoxal-5°-phosphate as a phosphorus source.Materials Research Bulletin, 2014, 55: 67-70. |
[18] | MA M G, ZHU Y J, CHANG J.Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite.Journal of Physical Chemistry B, 2006, 110(29): 14226-14230. |
[19] | ZHAO X Y, ZHU Y J, QI C, et al.Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5’-phosphate as a phosphorus source and application in drug delivery.Chemistry-An Asian Journal, 2013, 8(6): 1313-1320. |
[20] | ZHAO J, ZHU Y J, CHENG G F, et al.Microwave-assisted hydrothermal rapid synthesis of amorphous calcium phosphate nanoparticles and hydroxyapatite microspheres using cytidine 5’-triphosphate disodium salt as a phosphate source.Materials Letters, 2014, 124: 208-211. |
[21] | PARK S Y, KIM K I, PARK S P, et al.Aspartic acid-assisted synthesis of multifunctional strontium-substituted hydroxyapatite microspheres.Crystal Growth & Design, 2016, 16(8): 4318-4326. |
[22] | CHEN F, ZHU Y J, WANG K W, et al.Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures.CrystEngComm, 2011, 13(6): 1858-1863. |
[23] | ZHAO X Y, ZHU Y J, CHEN F, et al.Hydrothermal synthesis of hydroxyapatite nanorods and nanowires using riboflavin-5’- phosphate monosodium salt as a new phosphorus source and their application in protein adsorption.CrystEngComm, 2013, 15(39): 7926-7935. |
[24] | BRAMHE S, KIM T N, BALAKRISHNAN A, et al.Conversion from biowaste venerupis clam shells to hydroxyapatite nanowires.Materials Letters, 2014, 135: 195-198. |
[25] | AI M, DU Z Y, ZHU S Q, et al.Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application.Dental Materials, 2017, 33(1): 12-22. |
[26] | HE J Y, ZHANG K S, WU S B, et al.Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water.Journal of Hazardous Materials, 2016, 303(13): 119-130. |
[27] | JIANG Y Y, ZHU Y J, CHEN F, et al.Solvothermal synthesis of submillimeter ultralong hydroxyapatite nanowires using a calcium oleate precursor in a series of monohydroxy alcohols.Ceramics International, 2015, 41(4): 6098-6102. |
[28] | ZHANG Y G, ZHU Y J, CHEN F, et al.Ultralong hydroxyapatite nanowires synthesized by solvothermal treatment using a series of phosphate sodium salts.Materials Letters, 2015, 144: 135-137. |
[29] | LI H, ZHU Y J, JIANG Y Y, et al.Hierarchical assembly of monodisperse hydroxyapatite nanowires and construction of high-strength fire-resistant inorganic paper with high-temperature flexibility.ChemNanoMat, 2017, 3(4): 259-268. |
[30] | QI C, TANG Q L, ZHU Y J, et al.Microwave-assisted hydrothermal rapid synthesis of hydroxyapatite nanowires using adenosine 5'-triphosphate disodium salt as phosphorus source.Materials Letters, 2012, 85: 71-73. |
[31] | LIN K L, LIU X G, CHANG J, et al.Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors.Nanoscale, 2011, 3(8): 3052-3055. |
[32] | YANG Z, HUANG Y, CHEN S T, et al.Template synthesis of highly ordered hydroxyapatite nanowire arrays.Journal of Materials Science, 2005, 40(5): 1121-1125. |
[33] | COSTA D O, DIXON S J, RIZKALLA A S.One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis.ACS Applied Materials & Interfaces, 2012, 4(3): 1490-1499. |
[34] | CAO M H, WANG Y H, GUO C X, et al.Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions.Langmuir, 2004, 20(11): 4784-4786. |
[35] | CHEN F, ZHU Y J.Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures.ACS Nano, 2016, 10(12), 11483-11495. |
[36] | VORONOV R S, PAPAVASSILIOU D V, LEE L L.Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle.Industrial & Engineering Chemistry Research, 2008, 47(8): 2455-2477. |
[37] | DYETT B P, WU A H, LAMB R N.Mechanical stability of surface architecture—consequences for superhydrophobicity.ACS Applied Materilas & Interfaces, 2014, 6(21): 18380-18394. |
[38] | CHEN F F, ZHU Y J, XIONG Z C, et al.Highly flexible superhydrophobic and fire-resistant layered inorganic paper.ACS Applied Materials & Interfaces, 2016, 8(50): 34715-34724. |
[39] | CHEN F F, ZHU Y J, XIONG Z C, et al.Inorganic nanowires-assembled layered paper as the valve for controlling water transportation.ACS Applied Materials & Interfaces, 2017, 9(12): 11045-11053. |
[40] | XIONG Z C, ZHU Y J, CHEN F F, et al.One-step synthesis of silver nanoparticle-decorated hydroxyapatite nanowires for the construction of highly flexible free-standing paper with high antibacterial activity.Chemistry-A European Journal, 2016, 22(32): 11224-11231. |
[41] | XIONG Z C, YANG Z Y, ZHU Y J, et al.Ultralong hydroxyapatite nanowires-based paper co-loaded with silver nanoparticles and antibiotic for long-term antibacterial benefit.ACS Applied Materials & Interfaces, 2017, 9(27): 22212-22222. |
[42] | DONG L Y, ZHU Y J.A new kind of fireproof, flexible, inorganic, nanocomposite paper and its application to the protection layer in flame-retardant fiber-optic cables.Chemistry-A European Journal, 2017, 23(19): 4597-4604. |
[43] | CHEN F F, ZHU Y J, XIONG Z C, et al.Hydroxyapatite nanowires@metal-organic framework core/shell nanofibers: templated synthesis, peroxidase-like activity, and derived flexible recyclable test paper.Chemistry-A European Journal, 2017, 23(14): 3328-3337. |
[44] | SUN T W, ZHU Y J, CHEN F.Highly flexible multifunctional biopaper comprising chitosan reinforced by ultralong hydroxyapatite nanowires.Chemistry-A European Journal, 2017, 23(16): 3850-3862. |
[45] | SUN T W, ZHU Y J, CHEN F, et al.Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility, improved mechanical properties and excellent cellular attachment.Chemistry-An Asian Journal, 2017, 12(6): 655-664. |
[46] | XIE Y F, HE W M, LI F, et al.Luminescence enhanced Eu3+/Gd3+ co-doped hydroxyapatite nanocrystals as imaging agents in vitro and in vivo.ACS Applied Materials & Interfaces, 2016, 8(16): 10212-10219. |
[47] | ZHENG X Y, LIU M Y, HUI J F, et al.Ln3+-doped hydroxyapatite nanocrystals: controllable synthesis and cell imaging.Physical Chemistry Chemical Physics, 2015, 17(31): 20301-20307. |
[48] | PERERA T S H, HAN Y C, LU X F, et al. Rare earth doped apatite nanomaterials for biological application. Journal of Nanomaterials, 2015: 705390. |
[49] | SUN Y X, YANG H, TAO D L.Preparation and characterization of Eu3+-doped fluorapatite nanoparticles by a hydrothermal method.Ceramics International, 2012, 38(8): 6937-6941. |
[50] | TESCH A, WENISCH C, HERRMANN K H, et al.Luminomagnetic Eu3+ and Dy3+-doped hydroxyapatite for multimodal imaging.Materials Science & Engineering C, 2017, 81: 422-431. |
[51] | YANG R L, ZHU Y J, CHEN F F, et al.Luminescent, fire-resistant and water-proof ultralong hydroxyapatite nanowires-based paper for multimode anti-counterfeiting application.ACS Applied Materials & Interfaces, 2017, 9(30): 25455-25464. |
[52] | TAO J, ZHANG L M, CAO J J, et al.A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across china.Atmospheric Chemistry and Physics, 2017, 17(15): 9485-9518. |
[53] | BO M, SALIZZONI P, CLERICO M, et al. Assessment of indoor-outdoor particulate matter air pollution: a review. Atmosphere, 2017, 8(8): Article Number 136. |
[54] | XIONG Z C, YANG R L, ZHU Y J, et al.Flexible hydroxyapatite ultralong nanowires-based paper for highly efficient and multifunctional air filtration.Journal of Materials Chemistry A, 2017, 5(33): 17482-17491. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||