Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (10): 1109-1114.DOI: 10.15541/jim20170036
• Orginal Article • Previous Articles Next Articles
WANG Wei-Lei1,2,3, LIU Wei-Li1,3, BAI Lin-Sen3, SONG Zhi-Tang1,3, HUO Jun-Chao1,3
Received:
2017-01-17
Published:
2017-10-20
Online:
2017-09-21
About author:
WANG Wei-Lei(1990–), male, candidate of Master degree. E-mail: awelly@mail.sim.ac.cn
Supported by:
CLC Number:
WANG Wei-Lei, LIU Wei-Li, BAI Lin-Sen, SONG Zhi-Tang, HUO Jun-Chao. Surface Modified Alumina Particles and Their Chemical Mechanical Polishing (CMP) Behavior on C-plane (0001) Sapphire Substrate[J]. Journal of Inorganic Materials, 2017, 32(10): 1109-1114.
Elements in sample | Al2p | O1s |
---|---|---|
Binding energy/eV | 74.03 73.08 | 531.06 530.87 |
Table 1 Binding energy of abrasives containing before and after modified alumina particles
Elements in sample | Al2p | O1s |
---|---|---|
Binding energy/eV | 74.03 73.08 | 531.06 530.87 |
Atomic% | Al | O | C | N | Si |
---|---|---|---|---|---|
Unmodified alumina | 30.67 | 52.44 | 16.89 | 0 | 0 |
Modified alumina | 27.35 | 46.41 | 21.19 | 2.77 | 2.28 |
Table 2 Cmposition of elements on the surface of alumina particles before and after modification
Atomic% | Al | O | C | N | Si |
---|---|---|---|---|---|
Unmodified alumina | 30.67 | 52.44 | 16.89 | 0 | 0 |
Modified alumina | 27.35 | 46.41 | 21.19 | 2.77 | 2.28 |
Chemical state | Band energy/eV |
---|---|
(-Si(OCH3)2O-)xAly | 73.8 |
AlN | 73.1 |
Table 3 Binding energy of Al2p
Chemical state | Band energy/eV |
---|---|
(-Si(OCH3)2O-)xAly | 73.8 |
AlN | 73.1 |
Chemical state | Band energy/eV |
---|---|
(-Si(OCH3)2O-)xAly | 531.10 |
Al2O3 | 530.30 |
Table 4 Binding energy of O1s
Chemical state | Band energy/eV |
---|---|
(-Si(OCH3)2O-)xAly | 531.10 |
Al2O3 | 530.30 |
pH | Type of particles | MRR (0.0001 g/30 min) | Before polishing Rq Roughness/nm | After polishing Rq Roughness/nm |
---|---|---|---|---|
10.00 | Pure alumina | 46 | 0.968 | 0.610 |
10.00 | Modified alumina | 127 | 0.610 | 0.329 |
10.00 | Modified alumina | 139 | 0.981 | 0.315 |
13.00 | Pure alumina | 93 | 0.916 | 0.552 |
13.00 | Modified alumina | 122 | 0.552 | 0.311 |
Table 5 Surface roughness (Rq) and material removal rate(MRR)by applying before and after modified alumina particles in different pH
pH | Type of particles | MRR (0.0001 g/30 min) | Before polishing Rq Roughness/nm | After polishing Rq Roughness/nm |
---|---|---|---|---|
10.00 | Pure alumina | 46 | 0.968 | 0.610 |
10.00 | Modified alumina | 127 | 0.610 | 0.329 |
10.00 | Modified alumina | 139 | 0.981 | 0.315 |
13.00 | Pure alumina | 93 | 0.916 | 0.552 |
13.00 | Modified alumina | 122 | 0.552 | 0.311 |
Fig. 6 (a, b, f) AFM morphologies of sapphire substrate before polishing; (c) polished by pure alumina particles at pH 10.00; (d) polished by modified alumina particle (using sapphire substrate polished by pure alumina particles (c)) at pH 10.00; (e) polished by modified alumina particle at pH 10.00; (g) polished by modified alumina particle at pH 13.00; (h) polished by pure alumina particles (using sapphire substrate polished by pure alumina particles (g)) at pH 13.00
[1] | SAITO T, HIRAYAMA T, YAMAMOTO T, et al.Lattice strain and dislocations in polished surfaces on sapphire.J. Am. Ceram. Soc., 2005, 88: 2277-2285. |
[2] | NIU X H, LIU Y L, TAN B M, et al.Method of surface treatment on sapphire substrate.Transactions of Nonferrous Metals Society of China, 2006, 16: 732-734. |
[3] | TAKEUCHI T, TAKEUCHI H, SOTA S, et al.Optical properties of strained AlGaN and GaInN on GaN.Jpn. J. Appl. Phys., 1997, 36: L177-L179. |
[4] | LIMA R S, MARPLE B R.Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review.J. Therm. Spray Technol., 2007, 16: 40-63. |
[5] | KIM K T, KOO H Y, LEE G G, et al.Synthesis of alumina nanoparticle-embedded-bismuth telluride matrix thermoelectric composite powders.Mater. Lett. , 2012, 82: 141-144. |
[6] | ZOIS D, LEKATOU A, VARDAVOULIAS M, et al.Nanostructured alumina coatings manufactured by air plasma spraying: correlation of properties with the raw powder microstructure.J. Alloys Compd., 2010, 495: 611-616. |
[7] | TANG E J, CHENG G X, MA X L, et al.Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system.Appl. Surf. Sci., 2006, 252: 5227-5232. |
[8] | LEI H, LU H S, LUO J B, et al.Preparation of α-alumina- g-polyacrylamide composite abrasive and chemical mechanical polishing behavior.Thin Solid Films, 2008, 516: 3005-3008. |
[9] | LEI H, ZHANG P Z.Preparation of alumina/silica core-shell abrasives and their CMP behavior.Appl. Surf. Sci., 2007, 253: 8754-8761. |
[10] | ZHANG Z F, LEI H.Preparation of α-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate.Microelectron. Eng., 2008, 85: 714-720. |
[11] | SHEN X C, FANG X Z, ZHOU Y H, et al.Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superpar- amagnetic magnetite nanoparticles.Chem. Lett., 2004, 33: 1468-1469. |
[12] | ZHANG Z F, YU L, LIU W L, et al.Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate.Appl. Surf. Sci., 2010, 256: 3856-3861. |
[13] | HOMMA Y.Dynamical mechanism of chemical mechanical polishing analyzed to correct Preston's empirical model.J. Electroanal. Chem., 2006, 153: G587-G590. |
[14] | MATSUDA T, TAKAHASHI H, TSURUGAYA M, et al.Characteristics of abrasive-free micelle slurry for copper CMP.J. Electrochem. Soc., 2003, 150: G532-G536. |
[15] | ABIADE J T, CHOI W, SINGH R K.Effect of pH on ceria-silica interactions during chemical mechanical.J. Mater. Res., 2005, 20: 1139-1145. |
[16] | LIANG H, CRAVEN D R.Tribology in Chemical-Mechanical Planarization. Taylor & Francis, Boca Raton, Fla., 2005. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||