Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (5): 459-468.DOI: 10.15541/jim20160452
• Orginal Article • Previous Articles Next Articles
TIAN Xiao-Dong1, 2, LI Xiao1, 2, YANG Tao1, 2, SONG Yan1, LIU Zhan-Jun1, GUO Quan-Gui1
Received:
2016-08-08
Revised:
2016-09-19
Published:
2017-05-20
Online:
2017-05-02
About author:
TIAN Xiao-Dong. E-mail: tianxiaodong0124@163.com
CLC Number:
TIAN Xiao-Dong, LI Xiao, YANG Tao, SONG Yan, LIU Zhan-Jun, GUO Quan-Gui. Recent Advances on Synthesis and Supercapacitor Application of Binary Metal Oxide[J]. Journal of Inorganic Materials, 2017, 32(5): 459-468.
Materials | Parameters | Specific capacitance | Ref. |
---|---|---|---|
NiMoO4 nanospheres | H2O, 140℃, 12 h | 974.4 F/g (1 A/g) | [27] |
NiMoO4 nanorods | Ethanol-H2O, 140℃, 12 h | 944.8 F/g (1 A/g) | |
MnMoO4 nanosheets on Ni foam | H2O, 150℃, 8 h | 1271 F/g (5 mV/s) | [28] |
CoMoO4 nanoplate arrays on Ni foam | H2O, 180℃, 12 h | 1.26 F/cm2 (4 mA/cm2) | [29] |
NiMoO4 nanowire arrays on carbon cloth | H2O, 140℃, 8 h | 414.7 F/g (0.25 A/g) | [30] |
Table 1 Parameters and performance of BTMOs synthesized by solvothermal method
Materials | Parameters | Specific capacitance | Ref. |
---|---|---|---|
NiMoO4 nanospheres | H2O, 140℃, 12 h | 974.4 F/g (1 A/g) | [27] |
NiMoO4 nanorods | Ethanol-H2O, 140℃, 12 h | 944.8 F/g (1 A/g) | |
MnMoO4 nanosheets on Ni foam | H2O, 150℃, 8 h | 1271 F/g (5 mV/s) | [28] |
CoMoO4 nanoplate arrays on Ni foam | H2O, 180℃, 12 h | 1.26 F/cm2 (4 mA/cm2) | [29] |
NiMoO4 nanowire arrays on carbon cloth | H2O, 140℃, 8 h | 414.7 F/g (0.25 A/g) | [30] |
Fig. 1 (a) Schematic illustration of the formation processes of the NiMoO4 NW arrays on carbon cloth via hydrothermal; SEM images of the prepared NiMoO4 NW arrays on carbon cloth at 140℃ for different hours (b-d) and SEM inage of NiMoO4 NW arrays at 180℃(e) [30]
Fig. 4 (a) CV curves of NiMoO4·xH2O, CoMoO4, and CoMoO4-NiMoO4·xH2O bundles at a scan rate of 20 mV/s; (b) Specific capacitances of NiMoO4·xH2O, CoMoO4, and CoMoO4-NiMoO4·xH2O bundles at controlled current densities[42]
Fig. 5 (a) Schematic illustration for the formation process of the ternary TMOs with complex 1D nanostructures including tube-in-tube, nanotube, and solid 1D nanostructures; (b) CV curves of NiCo2O4 tube-in-tube nanostructures at various scan rates ranging from 1-20 mV•s-1; (c) the specific capacitance at various current density of NiCo2O4 tube-in-tube, nanotube, and 1D solid nanostructures[47]
Fig. 7 Schematic diagram showing (a) the fabrication of the winding electrode and (b) the fabrication process of the fiber solid-state NCO SCs; (c) Photos of fiber SCs in straight and bending states; (d) CV curves at 80 mV/s in straight and bending states, respectively. (e, f) The capacitance stability of fiber SCs in straight and bending states for 500 cycles, respectively[48]
Materials | Method | C/(F•g-1) | Rate capability | Cycle performance | Ref. |
---|---|---|---|---|---|
NiCo2O4 nanorobs on carbon nanofibers | Coprecipitation | 1026 (1 A/g) | 48.7% (20/1) | 91.5% (2 A/g, 2000) | [26] |
NiCo2O4 nanosheets on carbon nanofibers | 1002 (1 A/g) | 51.9% (20/1) | 96.4% (2 A/g, 2400) | ||
NiCo2O4 microspheres | Microwave assisted synthesis | 774 (2 mV/s) | 52.3% (100/2) | - | [32] |
Ordered mesoporous NiCo2O4 | Hard template | 739 (2.86 A/g) | 55.2% (28.6/2.86) | 95%(28.6 A/g, 2500) | [38] |
NiCo2O4 hollow submicropheres | Soft template | 987 (1 A/g) | 62.8% (50/1) | No capacity loss (5 A/g, 5000) | [40] |
NiCo2O4 nanowires | Microemulsion | 1481 (0.5 A/g) | 42.2% (8/0.5) | 91.4% (2 A/g, 2000) | [44] |
NiCo2O4 tube-in-tube structure | Electrospinning | 1756 (1 A/g) | 83.0% (20/1) | 92.4% (5 A/g, 5000) | [47] |
Flower like NiCo2O4/3D graphene foam | Electrodeposition | 1402 (1 A/g) | 77.0% (20/1) | 76.6% (5 A/g, 5000) | [48] |
NiCo2O4@Ppy nanowire arrays on carbon textiles | Hydrothermal | 2244 (1 A/g) | 60.5% (30/1) | 82.9% (3 A/g, 10000) | [54] |
Si/NiCo2O4 heterostructure | Hydrothermal | 1972 (2 A/g) | 54.4% (10/2) | 78% (10 A/g, 2000) | [55] |
Table 2 Comparison of the electrochemical performance of NiCo2O4 obtained by different methods
Materials | Method | C/(F•g-1) | Rate capability | Cycle performance | Ref. |
---|---|---|---|---|---|
NiCo2O4 nanorobs on carbon nanofibers | Coprecipitation | 1026 (1 A/g) | 48.7% (20/1) | 91.5% (2 A/g, 2000) | [26] |
NiCo2O4 nanosheets on carbon nanofibers | 1002 (1 A/g) | 51.9% (20/1) | 96.4% (2 A/g, 2400) | ||
NiCo2O4 microspheres | Microwave assisted synthesis | 774 (2 mV/s) | 52.3% (100/2) | - | [32] |
Ordered mesoporous NiCo2O4 | Hard template | 739 (2.86 A/g) | 55.2% (28.6/2.86) | 95%(28.6 A/g, 2500) | [38] |
NiCo2O4 hollow submicropheres | Soft template | 987 (1 A/g) | 62.8% (50/1) | No capacity loss (5 A/g, 5000) | [40] |
NiCo2O4 nanowires | Microemulsion | 1481 (0.5 A/g) | 42.2% (8/0.5) | 91.4% (2 A/g, 2000) | [44] |
NiCo2O4 tube-in-tube structure | Electrospinning | 1756 (1 A/g) | 83.0% (20/1) | 92.4% (5 A/g, 5000) | [47] |
Flower like NiCo2O4/3D graphene foam | Electrodeposition | 1402 (1 A/g) | 77.0% (20/1) | 76.6% (5 A/g, 5000) | [48] |
NiCo2O4@Ppy nanowire arrays on carbon textiles | Hydrothermal | 2244 (1 A/g) | 60.5% (30/1) | 82.9% (3 A/g, 10000) | [54] |
Si/NiCo2O4 heterostructure | Hydrothermal | 1972 (2 A/g) | 54.4% (10/2) | 78% (10 A/g, 2000) | [55] |
[1] | MANTHIRAM A, MURUGAN A V, SARKAR A, et al.Nanostructured electrode materials for electrochemical energy storage and conversion.Energy Environ. Sci., 2008, 1(6): 621-638. |
[2] | YAN J, WANG Q, WEI T, et al.Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities.Adv. Energy Mater., 2014, DOI: 10.1002/aenm.201300816. |
[3] | WANG Y, XIA Y.Recent progress in supercapacitors: from materials design to system construction.Adv. Mater., 2013, 25(37): 5336-5342. |
[4] | GONZ LEZ A, GOIKOLEA E, BARRENA J A, et al.Review on supercapacitors: Technologies and materials.Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206. |
[5] | WANG Q, YAN J, FAN Z.Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities.Energy Environ. Sci., 2016, 9(3): 729-762. |
[6] | ZHAI Y, DOU Y, ZHAO D, et al.Carbon materials for chemical capacitive energy storage.Adv. Mater., 2011, 23(42): 4828-4850. |
[7] | DENG X, ZHAO B, ZHU L, et al.Molten salt synthesis of nitrogen- doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors.Carbon, 2015, 93: 48-58. |
[8] | WANG K, WU H, MENG Y, et al.Conducting polymer nanowire arrays for high performance supercapacitors.Small, 2014, 10(1): 14-31. |
[9] | WANG Q, O’HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets.Chem. Rev., 2012, 112(7): 4124-4155. |
[10] | YU M, ZENG Y, HAN Y, et al.Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super- long cyclic durability of 100 000 cycles.Adv Funct Mater, 2015, 25(23): 3534-3540. |
[11] | RUI X, TAN H, YAN Q.Nanostructured metal sulfides for energy storage.Nanoscale, 2014, 6(17): 9889-9924. |
[12] | BALOGUN M S, QIU W, WANG W, et al.Recent advances in metal nitrides as high-performance electrode materials for energy storage devices.J. Mater. Chem. A, 2015, 3(4): 1364-1387. |
[13] | SUN M, LIU H, QU J, et al.Earth-rich transition metal phosphide for energy conversion and storage.Adv. Energy Mater., 2016, DOI: 10.1002/aenm.201600087. |
[14] | ZHI M, XIANG C, LI J, et al.Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.Nanoscale, 2013, 5(1): 72-88. |
[15] | DUBAL D P, GOMEZ-ROMERO P, SANKAPAL B R, et al.Nickel cobaltite as an emerging material for supercapacitors: An overview.Nano Energy, 2015, 11: 377-399. |
[16] | SHOWN I, GANGULY A, CHEN L C, et al.Conducting polymer-based flexible supercapacitor.Energ. Sci. Eng., 2014, 3(1): 2-26. |
[17] | WANG G, ZHANG L, ZHANG J.A review of electrode materials for electrochemical supercapacitors.Chem. Soc. Rev., 2012, 41(2): 797-828. |
[18] | KIM S Y, JEONG H M, KWON J H, et al.Nickel oxide encapsulated nitrogen-rich carbon hollow spheres with multiporosity for high-performance pseudocapacitors having extremely robust cycle life.Energy Environ. Sci., 2015, 8(1): 188-194. |
[19] | ABOUALI S, AKBARI GARAKANI M, ZHANG B, et al.Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors.ACS Appl. Mater. Interfaces, 2015, 7(24): 13503-13511. |
[20] | SARAVANAKUMAR B, PURUSHOTHAMAN K K, MURALIDHARAN G.Interconnected V2O5 nanoporous network for high-performance supercapacitors.ACS Appl. Mater. Interfaces, 2012, 4(9): 4484-4490. |
[21] | GHOSH A, RA E J, JIN M, et al.High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon- nanofiber paper.Adv. Funct. Mater., 2011, 21(13): 2541-2547. |
[22] | MENDOZA-S NCHEZ B, GRANT P S. Charge storage properties of a α-MoO3/carboxyl-functionalized single-walled carbon nanotube composite electrode in a Li ion electrolyte.Electrochim Acta, 2013, 98: 294-302. |
[23] | FAN Z, YAN J, WEI T, et al.Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density.Adv. Funct. Mater., 2011, 21(12): 2366-2375. |
[24] | CHAUDHARI N K, CHAUDHARI S, YU J S.Cube-like α-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors.ChemSusChem, 2014, 7(11): 3102-3111. |
[25] | PENG S, LI L, WU H B, et al.Controlled growth of nimoo4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors.Adv. Energy Mater., 2015, DOI: 10.1002/aenm.201401172. |
[26] | ZHANG G, LOU X W.Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors.Sci. Rep., 2013, 3: 1470. |
[27] | CAI D, WANG D, LIU B, et al.Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications.ACS Appl. Mater. Interfaces, 2013, 5(24): 12905-12910. |
[28] | MU X, ZHANG Y, WANG H, et al.A high energy density asymmetric supercapacitor from ultrathin manganese molybdate nanosheets.Electrochim Acta, 2016, 211: 217-224. |
[29] | GUO D, ZHANG H, YU X, et al.Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors.J. Mater. Chem. A, 2013, 1(24): 7247-7254. |
[30] | WANG C, XI Y, HU C, et al.β-NiMoO4 nanowire arrays grown on carbon cloth for 3D solid asymmetry supercapacitor.RSC Adv., 2015, 5: 107098-107104. |
[31] | WAN H, JIANG J, JI X, et al.Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors.Mater. Lett., 2013, 108: 164-167. |
[32] | KHALID S, CAO C, WANG L, et al.Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance.Sci. Rep., 2016, 6: 22699. |
[33] | DU J, ZHOU G, ZHANG H, et al.Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors.ACS Appl. Mater. Interfaces, 2013, 5(15): 7405-7409. |
[34] | WU J, GUO P, MI R, et al.Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors.J. Mater. Chem. A, 2015, 3(29): 15331-15338. |
[35] | XIAO K, XIA L, LIU G, et al.Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage.J. Mater. Chem. A, 2015, 3(11): 6128-6135. |
[36] | KONG L B, LU C, LIU M C, et al.Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4.J. Solid State Electrochem., 2013, 17(5): 1463-1471. |
[37] | HSU C T, HU C C.Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors.J. Power Sources, 2013, 242: 662-671. |
[38] | LU Q, CHEN Y, LI W, et al.Ordered mesoporous nickel cobaltite spinel with ultra-high supercapacitance.J. Mater. Chem. A, 2013, 1(6): 2331-2336. |
[39] | YUAN C, LI J, HOU L, et al.Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors.RSC Adv., 2013, 3(40): 18573-18578. |
[40] | ZHU Y, WANG J, WU Z, et al.An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive performances.J. Power Sources, 2015, 287: 307-315. |
[41] | LIU M C, KANG L, KONG L B, et al.Facile synthesis of NiMoO4·xH2O nanorods as a positive electrode material for supercapacitors.RSC Adv., 2013, 3(18): 6472-6478. |
[42] | LIU M C, KONG L B, LU C, et al.Design and synthesis of CoMoO4-NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors.J. Mater. Chem. A, 2013, 1(4): 1380-1387. |
[43] | HAETGE J, DJERDJ I, BREZESINSKI T.Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries.Chem. Commun., 2012, 48(53): 6726-6728. |
[44] | AN C, WANG Y, HUANG Y, et al.Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique.Nano Energy, 2014, 10: 125-134. |
[45] | LONG C, ZHENG M, XIAO Y, et al.Amorphous Ni-Co binary oxide with hierarchical porous structure for electrochemical capacitors.ACS Appl. Mater. Interfaces, 2015, 7(44): 24419-24429. |
[46] | CAI D, LIU B, WANG D, et al.Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors.Electrochim. Acta, 2014, 115: 358-363. |
[47] | PENG S, LI L, HU Y, et al.Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications.ACS Nano, 2015, 9(2): 1945-1954. |
[48] | ZHANG C, KUILA T, KIM N H, et al.Facile preparation of flower- like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes.Carbon, 2015, 89: 328-339. |
[49] | ZHOU J, HUANG Y, CAO X, et al.Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors.Nanoscale, 2015, 7(16): 7035-7039. |
[50] | WANG Q, WANG X, XU J, et al.Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes.Nano Energy, 2014, 8: 44-51. |
[51] | WANG X, YAN C, SUMBOJA A, et al.High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor.Nano Energy, 2014, 3: 119-126. |
[52] | AI Y, GENG X, LOU Z, et al.Rational synthesis of branched CoMoO4@CoNiO2 core/shell nanowire arrays for all-solid-state supercapacitors with improved performance.ACS Appl. Mater. Interfaces, 2015, 7(43): 24204-24211. |
[53] | CAI D, WANG D, LIU B, et al.Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage.ACS Appl Mater Interfaces, 2014, 6(7): 5050-5055. |
[54] | KONG D, REN W, CHENG C, et al.Three-dimensional NiCo2O4@polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor.ACS Appl Mater Interfaces, 2015, 7(38): 21334-21346. |
[55] | MA M, GUO J, ZHANG Y, et al.Si/NiCo2O4 heterostructures electrodes with enhanced performance for supercapacitor.RSC Adv., 2015, 5(77): 62813-62818. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[8] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[9] | LI Jianjun, CHEN Fangming, ZHANG Lili, WANG Lei, ZHANG Liting, CHEN Huiwen, XUE Changguo, XU Liangji. Peroxymonosulfate Activation by CoFe2O4/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic [J]. Journal of Inorganic Materials, 2025, 40(4): 440-448. |
[10] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[11] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[12] | MU Shuang, MA Qin, ZHANG Yu, SHEN Xu, YANG Jinshan, DONG Shaoming. Oxidation Behavior of Yb2Si2O7 Modified SiC/SiC Mini-composites [J]. Journal of Inorganic Materials, 2025, 40(3): 323-328. |
[13] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[14] | YANG Shuqi, YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(3): 329-336. |
[15] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||