Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (5): 449-458.DOI: 10.15541/jim20160380
• Orginal Article • Next Articles
HE Fei1,2, LI Ya1,2, LUO Jin1,2, FANG Min-Han1,2, HE Xiao-Dong1,2
Received:
2016-06-16
Revised:
2016-08-30
Published:
2017-05-20
Online:
2017-05-02
About author:
HE Fei. E-mail: hefei@hit.edu.cn
CLC Number:
HE Fei, LI Ya, LUO Jin, FANG Min-Han, HE Xiao-Dong. Development of SiO2/C and SiC/C Composites Featuring Aerogel Structures[J]. Journal of Inorganic Materials, 2017, 32(5): 449-458.
Precursors | Temperature/ ℃ | Density/ (g•cm-3) | Ratio of porosity/ % | specific surface area/(m2•g-1) | Pore volume/ (cm3•g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
PhTMS+TMOS (molar ratio=1:4)[ | as-prepared 1000 | 0.48 0.58 | - | 987 581 | - | 2.8 2.5 |
TEOS+PDMS[ | 1200 | 0.30 | - | 198.04 | 0.684 | 5.6 |
MDMS+TEOS (molar ratio=1:1)[ | as-prepared 800 | - | - | 425.5 275.0 | 1.87 - | 17.59 - |
BTEE[ | as-prepared 1000 | - | - | 1022 69 | 0.53 0.02 | - |
BTME[ | as-prepared 1000 | - | - | 867 735 | 0.74 0.36 | - |
TEOS+TBOT+PDMS[ | as-prepared 400 600 800 1000 | - | - | 1.1 300.1 515.2 283.1 1.4 | 1.7 2.8 2.7 1.7 1.1 | - |
BTEBP[ | 300 1300 1400 1500 | 0.264 0.260 0.265 0.266 | 83 91 91 91 | 1190 1050 818 796 | 0.916 0.802 0.703 0.639 | - |
MTMS+GPYMS[ | as-prepared 1000 as-prepared 1000 | 0.31 0.61 0.18 0.49 | 78 - 87 - | 464 207 618 150 | 1.24 0.98 1.07 0.52 | 11 18 7 14 |
PHMS[ | as-prepared 1000 | - | - | 227 180 | 1.37 1.09 | 52 24 |
MTES[ | as-prepared 1000 | - | - | 727 168 | 1.47 0.80 | 8.0 18.5 |
PDMS+TrEOS[ | as-prepared 1100 | - | 59-69 1.6 | 405-583 109 | - | 3.2-5.0 <2 |
MDES+TrEOS[ | as-prepared 1000 | - | 88±2 50±1 | 0.45±0.02 0.31±0.02 | - |
Table 1 Porous parameters of SiCO prepared by different siloxane precursors
Precursors | Temperature/ ℃ | Density/ (g•cm-3) | Ratio of porosity/ % | specific surface area/(m2•g-1) | Pore volume/ (cm3•g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
PhTMS+TMOS (molar ratio=1:4)[ | as-prepared 1000 | 0.48 0.58 | - | 987 581 | - | 2.8 2.5 |
TEOS+PDMS[ | 1200 | 0.30 | - | 198.04 | 0.684 | 5.6 |
MDMS+TEOS (molar ratio=1:1)[ | as-prepared 800 | - | - | 425.5 275.0 | 1.87 - | 17.59 - |
BTEE[ | as-prepared 1000 | - | - | 1022 69 | 0.53 0.02 | - |
BTME[ | as-prepared 1000 | - | - | 867 735 | 0.74 0.36 | - |
TEOS+TBOT+PDMS[ | as-prepared 400 600 800 1000 | - | - | 1.1 300.1 515.2 283.1 1.4 | 1.7 2.8 2.7 1.7 1.1 | - |
BTEBP[ | 300 1300 1400 1500 | 0.264 0.260 0.265 0.266 | 83 91 91 91 | 1190 1050 818 796 | 0.916 0.802 0.703 0.639 | - |
MTMS+GPYMS[ | as-prepared 1000 as-prepared 1000 | 0.31 0.61 0.18 0.49 | 78 - 87 - | 464 207 618 150 | 1.24 0.98 1.07 0.52 | 11 18 7 14 |
PHMS[ | as-prepared 1000 | - | - | 227 180 | 1.37 1.09 | 52 24 |
MTES[ | as-prepared 1000 | - | - | 727 168 | 1.47 0.80 | 8.0 18.5 |
PDMS+TrEOS[ | as-prepared 1100 | - | 59-69 1.6 | 405-583 109 | - | 3.2-5.0 <2 |
MDES+TrEOS[ | as-prepared 1000 | - | 88±2 50±1 | 0.45±0.02 0.31±0.02 | - |
Fig. 5 Geometric structure and heat transfer analysis of macro-porous SiCO ceramics[66] (a) Cubic array of intersecting spherical structure; (b) Heat transfer in two contact spherical particles; (c) Heat transfer in sphere-gas-sphere structure
Property | Value | Comments | Values for vitreous silica |
---|---|---|---|
Density/(g•cm-3) | 2.35 | 2.20 | |
Coefficient of the thermal expansion/K-1 | 3.14×10-6 | Average of many samples on cooling between 1000℃ and 100℃; hot-pressed | 0.5 |
Vickers hardness/(kg•mm-2) | 855 704 | 200 g load 1000 g load | 600-700 |
Critical stress intensity factor /(MPa•m1/2) | 1.8 | 1000 g load | 1 |
Fracture strength/MPa | 153±20 | 3-point bending of 0.74 mm diameter fibers | |
385±227 | 3-point bending of bars | ||
Young's elastic modulus/GPa | 97.9 | 70 | |
Index of refraction | 1.58 | At 0.5893 μm | 1.46 |
Glass transition/℃ | 1350 | Viscosity of 1013 P | 1190 |
Dielectric constant | 4.4 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 4 |
Dielectric loss tangent | 0.1 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 10-4 |
Electrical conductivity /(Ω·cm) -1 | 4×10-13 | 25℃, pyrolyzed to 1100℃ | ~10-22 |
Table 2 Properties of SiCO glass and vitreous silica
Property | Value | Comments | Values for vitreous silica |
---|---|---|---|
Density/(g•cm-3) | 2.35 | 2.20 | |
Coefficient of the thermal expansion/K-1 | 3.14×10-6 | Average of many samples on cooling between 1000℃ and 100℃; hot-pressed | 0.5 |
Vickers hardness/(kg•mm-2) | 855 704 | 200 g load 1000 g load | 600-700 |
Critical stress intensity factor /(MPa•m1/2) | 1.8 | 1000 g load | 1 |
Fracture strength/MPa | 153±20 | 3-point bending of 0.74 mm diameter fibers | |
385±227 | 3-point bending of bars | ||
Young's elastic modulus/GPa | 97.9 | 70 | |
Index of refraction | 1.58 | At 0.5893 μm | 1.46 |
Glass transition/℃ | 1350 | Viscosity of 1013 P | 1190 |
Dielectric constant | 4.4 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 4 |
Dielectric loss tangent | 0.1 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 10-4 |
Electrical conductivity /(Ω·cm) -1 | 4×10-13 | 25℃, pyrolyzed to 1100℃ | ~10-22 |
[1] | WHITE R J, BRUN N, BUDARIN V L, et al.Always look on the “light” side of life: sustainable carbon aerogels. ChemSusChem, 2014, 7(3): 670-689. |
[2] | HUSING N, SCHUBERT U.Aerogels-airy materials: chemistry, structure, and properties.Angewandte Chemie International Edition, 1998, 37(1/2): 22-45. |
[3] | PIERRE A C, PAJONK G M.Chemistry of aerogels and their applications. Chemical Reviews, 2002, 102(11): 4243-4266. |
[4] | RAO A V, BHAGAT S D, HIRASHIMA H, et al.Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. Journal of Colloid and Interface Science, 2006, 300(1): 279-285. |
[5] | RANDALL J P, MEADOR M A B, JANA S C. Tailoring mechanical properties of aerogels for aerospace applications.ACS Applied Materials & Interfaces, 2011, 3(3): 613-626. |
[6] | ANTONIETTI M, FECHLERN, FELLINGER T P. Carbon aerogels and monoliths: control of porosity and nanoarchitecture via Sol-Gel routes.Chemistry of Materials, 2013, 26(1): 196-210. |
[7] | MALEKI H, DURAES L, PORTUGAL A.An overview on silica aerogels synthesis and different mechanical reinforcing strategies.Journal of Non-Crystalline Solids, 2014, 385(2): 55-74. |
[8] | WANG Z, WANG D, QIAN Z, et al.Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.ACS Applied Materials & Interfaces, 2015, 7(3): 2016-2024. |
[9] | LEE D, STEVENS P C, ZENG S Q, et al.Thermal characterization of carbon-opacified silica aerogels.Journal of Non-Crystalline Solids, 1995, 186(2): 285-290. |
[10] | ZHOU X F, CUI S, LIU Y, et al.Adsorption capacity of hydrophobic SiO2 aerogel/activated carbon composite materials for TNT.Science China Technological Sciences, 2013, 56(7): 1767-1772. |
[11] | KONG Y, ZHONG Y, SHEN X, et al.Synthesis and characterization of monolithic carbon/silicon carbide composite aerogels.Journal of Porous Materials, 2013, 20(4): 845-849. |
[12] | KONG Y, SHEN X, CUI S, et al.Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation.Ceramics International, 2014, 40(6): 8265-8271. |
[13] | HASEGAWA G, KANAMORI K, NAKANISHI K, et al.A new route to monolithic macroporous SiC/C composites from biphenylene-bridged polysilsesquioxane gels.Chemistry of Materials, 2010, 22(8): 2541-2547. |
[14] | ERMAKOVA M A, ERMAKOV D Y, KUVSHINOV G G, et al.Synthesis of high surface area silica gels using porous carbon matrices.Journal of Porous Materials, 2000, 7(4): 435-441. |
[15] | YE L, JI Z H, HAN W J, et al.Synthesis and characterization of silica/carbon composite aerogels.Journal of the American Ceramic Society, 2010, 93(4): 1156-1163. |
[16] | SCHAEFER D W, PEKALA R, BEAUCAGE G.Origin of porosity in resorcinol-formaldehyde aerogels.Journal of Non-Crystalline Solids, 1995, 186(2): 159-167. |
[17] | TAMON H, KITAMURA T, OKAZAKI M.Preparation of silica aerogel from TEOS.Journal of Colloid and Interface Science, 1998, 197(2): 353-359. |
[18] | DU A, ZHOU B, ZHANG Z, et al.A special material or a new state of matter: a review and reconsideration of the aerogel.Materials, 2013, 6(3): 941-968. |
[19] | AGUADO-SERRANO J, ROJAS-CERVANTES M L, LOPEZ- PEINADO A J, et al. Silica/C composites prepared by the Sol-Gel method. Influence of the synthesis parameters on textural characteristics.Microporous and Mesoporous Materials, 2004, 74(74): 111-119. |
[20] | LI X, CHEN X, SONG H.Synthesis of β-SiC nanostructures via the carbothermal reduction of resorcinol-formaldehyde/SiO2 hybrid aerogels.Journal of Materials Science, 2009, 44(17): 4661-4667. |
[21] | XU H, ZHANG H, HUANG Y, et al.Porous carbon/silica composite monoliths derived from resorcinol-formaldehyde/TEOS.Journal of Non-Crystalline Solids, 2010, 356(20/21/22): 971-976. |
[22] | CHEN K, BAO Z, DU A, et al.One-pot synthesis, characterization and properties of acid-catalyzed resorcinol/formaldehyde cross- linked silica aerogels and their conversion to hierarchical porous carbon monoliths.Journal of Sol-Gel Science and Technology, 2012, 62(3): 294-303. |
[23] | CHEN K, BAO Z, DU A, et al.Synthesis of resorcinol-formaldehyde/ silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide.Microporous and Mesoporous Materials, 2012, 149(1): 16-24. |
[24] | KONG Y, ZHONG Y, SHEN X, et al.Facile synthesis of resorcinol-formaldehyde/silica composite aerogels and their transformation to monolithic carbon/silica and carbon/silicon carbide composite aerogels.Journal of Non-Crystalline Solids, 2012, 358(23): 3150-3155. |
[25] | KONG Y, ZHONG Y, SHEN X, et al.Synthesis of monolithic mesoporous silicon carbide from resorcinol-formaldehyde/silica composites.Materials Letters, 2013, 99(20): 108-110. |
[26] | KONG Y, ZHONG Y, SHEN X, et al.Effect of silica sources on nanostructures of resorcinol-formaldehyde/silica and carbon/silicon carbide composite aerogels.Microporous and Mesoporous Materials, 2014, 197(10): 77-82. |
[27] | ZHMUD B V, SONNEFELD J.Aminopolysiloxane gels: production and properties.Journal of Non-crystalline Solids, 1996, 195(1/2): 16-27. |
[28] | YAO J, WANG H, ZHANG X, et al.Role of pores in the carbothermal reduction of carbon-silica nanocomposites into silicon carbide nanostructures.The Journal of Physical Chemistry C, 2007, 111(2): 636-641. |
[29] | KIM H J, KIM J H, KIM W I, et al.Nanoporous phloroglucinol- formaldehyde carbon aerogels for electrochemical use.Korean Journal of Chemical Engineering, 2005, 22(22): 740-744. |
[30] | SONG L, FENG D, LEE H J, et al.Stabilizing surfactant templated cylindrical mesopores in polymer and carbon films through composite formation with silica reinforcement.The Journal of Physical Chemistry C, 2010, 114(21): 9618-9626. |
[31] | MEECHOONUCK M, VAS-UMNUAY P, PAVARAJAM V.Synthesis of porous silicon nitride using silica/carbon composite derived from phenol-resorcinol-formaldehyde gel.Ceramics International, 2016, 42(9): 10879-10885. |
[32] | ZHENG Y, ZHENG Y, LI Z, et al.Preparations of C/SiC composites and their use as supports for Ru catalyst in ammonia synthesis.Journal of Molecular Catalysis A: Chemical, 2009, 301(1/2): 79-83. |
[33] | RAMAN V, BAHL O P, DHAWAN U.Synthesis of silicon carbide through the sol-gel process from different precursors.Journal of Materials Science, 1995, 30(10): 2686-2693. |
[34] | LI X K, LIU L, ZHANG Y X, et al.Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels.Carbon, 2001, 39(2): 159-165. |
[35] | PREISS H, BERGER L M, BRAUN M.Formation of black glasses and silicon carbide from binary carbonaceous/silica hydrogels.Carbon, 1995, 33(33): 1739-1746. |
[36] | SERAJI M M, GHAFOORIAN N S, BAHRAMIAN A R, et al.Preparation and characterization of C/SiO2/SiC aerogels based on novolac/silica hybrid hyperporous materials.Journal of Non- Crystalline Solids, 2015, 425(1): 146-152. |
[37] | KARNIB M, KABBANI A, HOALIL H, et al.Heavy metals removal using activated carbon, silica and silica activated carbon composite.Energy Procedia, 2014, 50(1): 113-120. |
[38] | LU X, WANG P, ARDUINI-SCHUSTER M C, et al. Thermal transport in organic and opacified silica monolithic aerogels.Journal of Non-crystalline Solids, 1992, 145(1): 207-210. |
[39] | LIU H, LI T, SHI Y, et al.Thermal insulation composite prepared from carbon foam and silica aerogel under ambient pressure.Journal of Materials Engineering and Performance, 2015, 24(10): 4054-4059. |
[40] | PINCHUK O A, DUNDAR F, ATA A, et al.Improved thermal stability, properties, and electrocatalytic activity of Sol-Gel silica modified carbon supported Pt catalysts.International Journal of Hydrogen Energy, 2012, 37(3): 2111-2120. |
[41] | MONER-GIRONA M, MARTINEZ E, ESTEVE J, et al.Micromechanical properties of carbon-silica aerogel composites.Applied Physics A, 2002, 74(1): 119-122. |
[42] | LIU C, KOMARNENI S.Carbon-silica xerogel and aerogel composites.Journal of Porous Materials, 1995, 1(1): 75-84. |
[43] | SPASSOVA I, STOEVA N, NICKOLOV R, et al.Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides.Applied Surface Science, 2016, 369(1): 120-129. |
[44] | WORSLEY M A, KUNTZ J D, SATCHER J H, et al.Synthesis and characterization of monolithic, high surface area SiO2/C and SiC/C composites.Journal of Materials Chemistry, 2010, 20(23): 4840-4844. |
[45] | LEVENTIS N, SADEKAR A, CHANDRASEKARANn N, et al.Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks.Chemistry of Materials, 2010, 22(9): 2790-2803. |
[46] | PANTONO C G, SINGH A K, ZHANGH. Silicon oxycarbide glasses.Journal of Sol-Gel Science and Technology, 1999, 14(1): 7-25. |
[47] | LIU C, CHEN H Z, KOMARNENF S, et al.High surface area SiC/silicon oxycarbide glasses prepared from phenyltrimethoxysilane- tetramethoxysilane gels.Journal of Porous Materials, 1996, 2(3): 245-252. |
[48] | SINGH A K, PANTANO C G.Porous silicon oxycarbide glasses.Journal of the American Ceramic Society, 1996, 79(10): 2696-2704. |
[49] | ZHANG H, PANTANO C G.Synthesis and characterization of silicon oxycarbide glasses.Journal of the American Ceramic Society, 1990, 73(4): 958-963. |
[50] | BABONNEAU F, THORNE K, MACKENZIE J D.Dimethyldiethoxysilane/tetraethoxysilane copolymers: precursors for the silicon-carbon-oxygen system.Chemistry of Materials, 1989, 1(5): 554-558. |
[51] | FENG J, XIAO Y, JIANG Y, et al.Synthesis, structure, and properties of silicon oxycarbide aerogels derived from tetraethylortosilicate/polydimethylsiloxane.Ceramics International, 2015, 41(4): 5281-5286. |
[52] | TOURY B, BLUM R, GOLETTO V, et al.Thermal stability of periodic mesoporous SiCO glasses.Journal of Sol-Gel Science and Technology, 2005, 33(1): 99-102. |
[53] | TAMAYO A, TELLEZ L, PENA-ALONSO R, et al.Surface changes during pyrolytic conversion of hybrid materials to oxycarbide glasses.Journal of Materials Science, 2009, 44(1): 5743-5753. |
[54] | ARAVIND P R, RATKE L, KOLBE M, et al.Gels dried under supercritical and ambient conditions: a comparative study and their subsequent conversion to silica-carbon composite aerogels. Journal of Sol-Gel Science and Technology, 2013, 67(3): 592-600. |
[55] | PRADEEP V S, AYANA D G, GRACZYK-ZAJAC M, et al.High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochimica Acta, 2015, 157(1): 41-45. |
[56] | ARAVIND P R, SORARU G D.Porous silicon oxycarbide glasses from hybrid ambigels. Microporous and Mesoporous Materials, 2011, 142(2/3): 511-517. |
[57] | TAMAYO A, RUBIO F, RUBIO J, et al.Surface and structural modification of nanostructured mesoporous silicon oxycarbide glasses obtained from preceramic hybrids aged in NH4OH.Journal of the American Ceramic Society, 2013, 96(1): 323-330. |
[58] | PARMENTIER J, SORARU G D, BABONNEAU F.Influence of the microstructure on the high temperature behaviour of gel-derived SiOC glasses.Journal of the European Ceramic Society, 2001, 21(6): 817-824. |
[59] | WEINBERGER M, PUCHEGGER S, FROSCHL T, et al.Sol- Gel Processing of a glycolated cyclic organosilane and its pyrolysis to silicon oxycarbide monoliths with multiscale porosity and large surface areas.Chemistry of Materials, 2010, 22(4): 1509-1520. |
[60] | SORARU G D, MODENA S, GUADAGNINO E, et al.Chemical durability of silicon oxycarbide glasses.Journal of the American Ceramic Society, 2002, 85(6): 1529-1536. |
[61] | BREQUEL H, PARMENTIER J, WALTER S, et al.Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses.Chemistry of Materials, 2004, 16(1): 2585-2598. |
[62] | LATOURNERIE J, DEMPSEY P, HOURLIER‐BAHLOUL D, et al. Silicon oxycarbide glasses: Part 1-Thermochemical stability.Journal of the American Ceramic Society, 2006, 89(5): 1485-1491. |
[63] | SORARU G D, DALLAPICCOLA E, D'ANDREA G. Mechanical characterization of Sol-Gel-derived silicon oxycarbide glasses.Journal of the American Ceramic Society, 1996, 79(8): 2074-2080. |
[64] | RENLUND G M, PROCHAZKA S, DOREMUS R H.Silicon oxycarbide glasses: Part II. Structure and properties.Journal of Materials Research, 1991, 6(6): 2723-2734. |
[65] | MOYSAN C, RIEDEL R, HARSHE R, et al.Mechanical characterization of a polysiloxane-derived SiOC glass.Journal of the European Ceramic Society, 2007, 27(1): 397-403. |
[66] | QIU L, LI Y M, ZHENG X H, et al.Thermal-conductivity studies of macro-porous polymer-derived SiOC ceramics.International Journal of Thermophysics, 2014, 35(1): 76-89. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||