Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (4): 379-385.DOI: 10.15541/jim20160330
• Orginal Article • Previous Articles Next Articles
XU Hong-Mei1, 2, ZHANG Hua3, LI Heng3, JIAN Yao-Yong3, XIE Wu3, WANG Yi-Ping3, XU Ming-Ze3
Received:
2016-05-19
Revised:
2016-08-03
Published:
2017-04-20
Online:
2017-03-24
Supported by:
CLC Number:
XU Hong-Mei, ZHANG Hua, LI Heng, JIAN Yao-Yong, XIE Wu, WANG Yi-Ping, XU Ming-Ze. Preparation and Oxygen-reduction Mechanism Investigation of Nanostructure LSCF-SDC Composite Cathodes[J]. Journal of Inorganic Materials, 2017, 32(4): 379-385.
Fig. 3 SEM images of LSCF-SDC composite cathodes prepared by infiltration different LSCF loadings(a) 8.5vol%; (b) 12.3vol%; (c) 16.5vol%; (d) 20.9vol%; (e) 23.2vol%
Loadings /vol% | n | |||
---|---|---|---|---|
RH | RM | RL | Rp | |
8.5 | 0.06 | 0.22 | 0.52 | 0.2524 |
12.3 | 0.01 | 0.25 | 0.55 | 0.2630 |
16.5 | 0.01 | 0.27 | 0.57 | 0.2900 |
20.9 | 0.02 | 0.26 | 0.58 | 0.2903 |
23.2 | 0.01 | 0.21 | 0.49 | 0.2482 |
Table 1 Reaction orders “n” of cathodes infiltrated with different LSCF loadings
Loadings /vol% | n | |||
---|---|---|---|---|
RH | RM | RL | Rp | |
8.5 | 0.06 | 0.22 | 0.52 | 0.2524 |
12.3 | 0.01 | 0.25 | 0.55 | 0.2630 |
16.5 | 0.01 | 0.27 | 0.57 | 0.2900 |
20.9 | 0.02 | 0.26 | 0.58 | 0.2903 |
23.2 | 0.01 | 0.21 | 0.49 | 0.2482 |
Fig. 8 LSCF loadings dependence of total cathode polarization resistance (Rp), high-frequency polarization resistance (RH), medium-frequency polarization resistance (RM) and low-frequency polarization resistance (RL) in the impedance spectra of LSCF- SDC composite cathodes
[1] | STEEL B C H. Appraisal of Ce1-yGdyO2/y/2 electrolytes for IT-SOFC operation at 500℃. Solid State Ionics, 2000, 129(1-4): 95-110. |
[2] | ZHEN Y D, TOK A I Y, JIANG S P, et al. Fabiraction and performance of gadolinia-doped ceria-based intermediated-temperature solid oxide fuel. Journal of Power Sources, 2008, 178(1): 69-74. |
[3] | ADLER S B.Mechanism and kinetics reduction on porous La1-xSrxCoO3-δ electrodes. Solid State Ionics, 1998, 111(1/2): 125-134. |
[4] | TARANCÓN A, PEÑA-MARTÍNEZ J, MARRERO-LÓPEZ D, et al. Stability, chemical compatibility and electrochemical of GdBaCo2O5+x layered perovskite as cathode for intermediate temperature solid oxide fuel cells. Solid State Ionics, 2008, 179(40): 2372-2378. |
[5] | DING HAN-PING, XUE XING-JIAN.Layered perovskite GdBaCoFeO5+x cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35(9): 4316-4319. |
[6] | ZHOU WEI, RAN RAN, SHAO ZONG-PING.Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-δ based cathodes for intermediate-temperature solid-oxide fuel cells: a review. Journal of Power Sources, 2009, 192(2): 231-246. |
[7] | ZHANG YONG-JUN, YU BO, LU SHI-QUAN, et al.Effect of Cu doping on YBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2014, 134: 107-115. |
[8] | XIA CHANG-RONG, RAUCH WILLIAM, CHEN FANG-LIN, et al.Sm0.5Sr0.5O3 for low-temperature SOFCs. Solid State Ionics, 2002, 149(1/2): 11-19. |
[9] | JIANG S P, WANG W.Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells. Solid State Ionics, 2005, 176(15/16): 1351-1357. |
[10] | ZHAO FEI, ZHANG LEI, JIANG ZHI-YI, et al.A high performance intermediate-temperature solid oxide fuel cell using impregnated La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. Journal of Alloys and Compounds, 2009, 487(1-2): 781-785. |
[11] | HAN DA, WU HAO, LI JUN-LIANG, et al.Nanostructuring of SmBa0.5Sr0.5Co2O5+δ cathodes for reduced-temperature solid oxide fuel cells. Journal of Power Sources, 2014, 246(15): 409-416. |
[12] | ZHOU YU-CUN, XIN XIAN-SHUANG, LI JUN-LIANG, et al.Performance and degradation of metal-supported solid oxide fuel cells with impreganted electrodes. Imternational Journal of Hydrgen Energy, 2014, 39(5): 2279-2285. |
[13] | WANG YAO, ZHANG HAN, CHEN FANG-LIN, et al.Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process. Journal of Power Sources, 2012, 203(1): 34-41. |
[14] | KLEMENSØ TRINE, CHATZICHRISTODOULOU CHRISTODOULOS, NIELSEN JIMMI, et al.Characterization of impregnated GDC nano-structures and their functionality in LSM based cathodes. Solid State Ionics, 2012, 224: 21-31. |
[15] | WANG YAO, ZHANG LEI, XIA CHANG-RONG.Enhanceing oxyen surface exhange coefficients of strontium-doped lanthanum manganates with electrolytes. International Journal of Hydrogen Energy, 2012, 37(3): 2182-2186. |
[16] | BIDRAWN F, KIM G, ARAMRUEANG N, et al.Dopants to enhance SOFC cathodes based on Sr-doped LaFeO3 and LaMnO3. Journal of Power Sources, 2010, 195(3): 720-728. |
[17] | BUYUKAKSOY ALIGUL, PETROVSKY VLADIMIR, DOGAN FATIH.Solid oxide fuel cells with symmetrical Pt-YSZ electrodes prepared by YSZ infiltration. Journal of Electrochemical Society, 2013, 160(4): F482-F486. |
[18] | XU HONG-MEI, YAN HONG-GE, CHEN ZHEN-HUA.Sintering and electrical properties of Ce0.8Y0.2O1.9 powders prepared by citric acid-nitrate low temperature combustion process. Journal of Power Sources, 2006, 163(1): 409-414. |
[19] | LEE SUNG-IL, KIM JEONGHEE, SON JI-WON, et al.High performance air electrode for solid oxide regenerative fuel cells fabricated by infiltration of nano-catalysts. Journal of Power Sources, 2014, 250: 15-20. |
[20] | SHA XUE-QING, LU ZHE, HUANG XI-QIANG, et al.Preparation and properties of rare earth co-doped Ce0.8Sm0.2-xYxO1.9 electrolyte materials for SOFC. Journal of Alloys and Compounds, 2006, 424(1-2): 315-321. |
[21] | BAEK SEUNG-WOOK, BAE JOONGMYEON, YOO YOUNG-SUNG.Cathode reaction mechanism of porous- structured Sm0.5Sr0.5CoO3-δ and Sm0.5Sr0.5CoO3-δ/Sm0.2Ce0.8O1.9 for oxide fuel cells., Journal of Power Sources, 2009, 193(2): 431-440. |
[1] | WANG Kunpeng, LIU Zhaolin, LIN Cunsheng, WANG Zhiyu. Development of Quasi-solid-state Na-ion Battery Based on Water-minimal Prussian Blue Cathode [J]. Journal of Inorganic Materials, 2024, 39(9): 1005-1012. |
[2] | PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao. High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method [J]. Journal of Inorganic Materials, 2024, 39(8): 911-919. |
[3] | TAN Min, CHEN Xiaowu, YANG Jinshan, ZHANG Xiangyu, KAN Yanmei, ZHOU Haijun, XUE Yudong, DONG Shaoming. Microstructure and Oxidation Behavior of ZrB2-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2024, 39(8): 955-964. |
[4] | YE Zibin, ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang. Preparation and Performances of Tubular Cone-shaped Anode-supported Segmented-in-series Direct Carbon Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2024, 39(7): 819-827. |
[5] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[6] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[7] | ZHANG Kun, WANG Yu, ZHU Tenglong, SUN Kaihua, HAN Minfang, ZHONG Qin. LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Property Manipulation and Its Effect on SOFC Electrochemical Performance [J]. Journal of Inorganic Materials, 2024, 39(4): 367-373. |
[8] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[9] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[10] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[11] | XUE Dingxi, YI Bingyao, LI Guojun, MA Shuai, LIU Keqin. Numerical Simulation of Thermal Stress in Solid Oxide Fuel Cells with Functional Gradient Anode [J]. Journal of Inorganic Materials, 2024, 39(11): 1189-1196. |
[12] | ZHAO Rui, MAO Fei, QIAN Hui, YANG Xiao, ZHU Xiangdong, ZHANG Xingdong. Micro-/Nano-structured Biomaterials for Bone Regeneration: New Progress [J]. Journal of Inorganic Materials, 2023, 38(7): 750-762. |
[13] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[14] | GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC [J]. Journal of Inorganic Materials, 2023, 38(6): 693-700. |
[15] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||