Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (1): 1-10.DOI: 10.15541/jim20160297
• Orginal Article • Next Articles
LUO Wei1,2, WEI Jing3, DENG Yong-Hui3, LI Yu-Hui3, WANG Lian-Jun1, ZHAO Tao1, JIANG Wan1
Received:
2016-05-10
Revised:
2016-06-14
Published:
2017-01-20
Online:
2016-12-15
About author:
LUO Wei. E-mail: wluo@dhu.edu.cn
Supported by:
CLC Number:
LUO Wei, WEI Jing DENG Yong-Hui, LI Yu-Hui, WANG Lian-Jun, ZHAO Tao, JIANG Wan. Progress on the Fabrication of Ordered Mesoporous Materials with Large Pores by Using Novel Amphiphilic Block Copolymers as Templates[J]. Journal of Inorganic Materials, 2017, 32(1): 1-10.
Fig. 3 Schematic illustration of the formation process of mesoporous carbon by using amphiphilic PS-b-P4VP copolymers as template (a) and its corresponding SEM image (b)[43]
Fig. 4 Schematic illustration of the formation process of mesoporous carbon with tunable pore size and wall thickness by using amphiphilic PEO-b-PMMA-b-PS copolymers as template[46]
Fig. 7 Schematic illustration of the formation process of mesoporous titania with large pores and simple cubic structure by using amphiphilic PEO-b-PS copolymers as template[52]
[1] | SHI Y, WAN Y, ZHAO D.Ordered mesoporous non-oxide materials.Chem. Soc. Rev., 2011, 40(7): 3854-3878. |
[2] | ZHAO D, FENG J,HUO Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.Science, 1998, 279(5350): 548-552. |
[3] | BECK J S, VARTULI J C,ROTH W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates.J. Am. Chem. Soc., 1992, 114(27): 10834-10843. |
[4] | MENG Y, GU D, ZHANG F, et al. A Family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-sssembly.Chem. Mater., 2006, 18(18): 4447-4464. |
[5] | ZHAI Y, DOU Y, ZHAO D, et al. Carbon materials for chemical capacitive energy storage. Adv. Mater., 2011, 23(42): 4828-4850. |
[6] | LIU Y, LAN K, BAGABAS A A, et al. Ordered macro/mesoporous TiO2 hollow microspheres with highly crystalline thin shells for high-efficiency photoconversion.Small, 2016, 12(7): 860-867. |
[7] | WANG C, LI X, XI X, et al. Bimodal highly ordered mesostructure carbon with high activity for Br2/Br- redox couple in bromine based batteries.Nano Energy, 2016, 21: 217-227. |
[8] | LIU H, LI W, SHEN D, et al. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc., 2015, 137(40): 13161-13166. |
[9] | ZHOU W, GAO H,GOODENOUGH J B.Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries.Adv. Energy Mater., 2016, 6(1):1501802. |
[10] | DENG Y, CAI Y, SUN Z, et al. Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system.J. Am. Chem. Soc., 2010, 132(24): 8466-8473. |
[11] | GARG S, SONI K, AJEETH PRABHU T, et al. Effect of ordered mesoporous Zr SBA-15 support on catalytic functionalities of hydrotreating catalysts 2.Variation of molybdenum and promoter loadings. Catal. Today, 2016, 261: 128-136. |
[12] | DUTTA B, BISWAS S, SHARMA V, et al. Mesoporous manganese oxide catalyzed aerobic oxidative coupling of anilines to aromatic azo compounds.Angew. Chem. Int. Ed., 2016, 55(6): 2171-2175. |
[13] | JOO S H, PARK J Y, TSUNG C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater., 2009, 8(2): 126-131. |
[14] | EGODAWATTE S, DATT A, BURNS E A, et al. Chemical insight into the adsorption of chromium(III) on iron oxide/mesoporous silica nanocomposites.Langmuir, 2015, 31(27): 7553-7562. |
[15] | FAN J, YU C, GAO F,, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties.Angew. Chem. Int. Ed., 2003, 42(27): 3146-3150. |
[16] | TENG W, WU Z, FAN J, et al. Amino-functionalized ordered mesoporous carbon for the separation of toxic microcystin-LR. J. Mater. Chem., 2015, 3(37): 19168-19176. |
[17] | WU C, LIANG Y, YANG K, et al. Clickable periodic mesoporous organosilica monolith for highly efficient capillary chromatographic separation. Anal. Chem., 2016, 88(3): 1521-1525. |
[18] | LUO W, LI Y, DONG J, et al. A resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing.Angew. Chem. Int. Ed., 2013, 52(40): 10505-10510. |
[19] | GE X, SUN L, MA B, et al. Simultaneous realization of Hg2+ sensing, magnetic resonance imaging and upconversion luminescence in vitro and in vivo bioimaging based on hollow mesoporous silica coated UCNPs and ruthenium complex. Nanoscale, 2015, 7(33): 13877-13887. |
[20] | LI Z, CLEMENS D L,LEE B Y, et al. Mesoporous silica nanoparticles with pH-sensitive nanovalves for delivery of moxifloxacin provide improved treatment of lethal pneumonic tularemia.ACS Nano, 2015, 9(11): 10778-10789. |
[21] | LIU J, LUO Z, ZHANG J, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy.Biomaterials, 2016, 83: 51-65. |
[22] | WANG Y, GU H.Core shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery.Adv. Mater., 2015, 27(3): 576-585. |
[23] | SCHÜTH F. Non-siliceous mesostructured and mesoporous materials.Chem. Mater., 2001, 13(10): 3184-3195. |
[24] | WIDENMEYER M,ANWANDER R.Pore size control of highly ordered mesoporous silica MCM-48.Chem. Mater., 2002, 14(4): 1827-1831. |
[25] | YU C, FAN J, TIAN B, et al. Synthesis of mesoporous silica from commercial poly(ethylene oxide)/poly(butylene oxide) copolymers: toward the rational design of ordered mesoporous materials. The Journal of Physical Chemistry B, 2003, 107(48): 13368-13375. |
[26] | HUO Q, MARGOLESE D I,STUCKY G D.Surfactant control of phases in the synthesis of mesoporous silica-based materials.Chem. Mater., 1996, 8(5): 1147-1160. |
[27] | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710-712. |
[28] | GAO C, SAKAMOTO Y, SAKAMOTO K, et al. Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry.Angew. Chem. Int. Ed., 2006, 45(26): 4295-4298. |
[29] | CHE S, GARCIA-BENNETT A E, YOKOI T, et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure.Nat. Mater., 2003, 2(12): 801-805. |
[30] | GARCIA-BENNETT A E, KUPFERSCHMIDT N, SAKAMOTO Y, et al. Synthesis of mesocage structures by kinetic control of self-assembly in anionic surfactants. Angew. Chem. Int. Ed., 2005, 44(33): 5317-5322. |
[31] | ZHAO D, HUO Q, FENG J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998, 120(24): 6024-6036. |
[32] | FAN J, YU C, LEI J, et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am. Chem. Soc., 2005, 127(31): 10794-10795. |
[33] | MA G, YAN X, LI Y, et al. Ordered nanoporous silica with periodic 30-60 nm pores as an effective support for gold nanoparticle catalysts with enhanced lifetime.J. Am. Chem. Soc., 2010, 132(28): 9596-9597. |
[34] | BRINKER C J, LU Y, SELLINGER A, et al. Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater., 1999, 11(7): 579-585. |
[35] | DENG Y, CAI Y, SUN Z, et al. Controlled synthesis and functionalization of ordered large-pore mesoporous carbons. Adv. Funct. Mater., 2010, 20(21): 3658-3665. |
[36] | WEI J, WANG H, DENG Y, et al. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J. Am. Chem. Soc., 2011, 133(50): 20369-20377. |
[37] | WEI J, YUE Q, SUN Z, et al. Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates.Angew. Chem. Int. Ed., 2012, 51(25): 6149-6153. |
[38] | WANG C, WEI J, YUE Q, et al. A shear stress regulated assembly route to silica nanotubes and their closely packed hollow mesostructures. Angew. Chem. Int. Ed., 2013, 52(44): 11603-11606. |
[39] | YU K, SMARSLY B, BRINKER C J.Self-Assembly and characterization of mesostructured silica films with a 3D arrangement of isolated spherical mesopores.Adv. Funct. Mater., 2003, 13(1): 47-52. |
[40] | SMARSLY B, XOMERITAKIS G,YU K, et al. Microstructural characterization of polystyrene-block-poly(ethylene oxide)-templated silica films with cubic-ordered spherical mesopores. Langmuir, 2003, 19(18): 7295-7301. |
[41] | YU K, HURD A J, EISENBERG A, et al. Syntheses of silica/ polystyrene-block-poly (ethylene oxide) films with regular and reverse mesostructures of large characteristic length scales by solvent evaporation-induced self-assembly. Langmuir, 2001, 17(26): 7961-7965. |
[42] | DENG Y, YU T, WAN Y, et al. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J. Am. Chem. Soc., 2007, 129(6): 1690-1697. |
[43] | LIANG C, HONG K, GUIOCHON G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers.Angew. Chem. Int. Ed., 2004, 43(43): 5785-5789. |
[44] | RODRIGUEZ A T, LI X, WANG J, et al. Facile synthesis of nanostructured carbon through self-assembly between block copolymers and carbohydrates. Adv. Funct. Mater., 2007, 17(15): 2710-2716. |
[45] | DENG Y, LIU C, GU D, et al. Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO-PMMA diblock copolymer. J. Mater. Chem., 2008, 18(1): 91-97. |
[46] | ZHANG J, DENG Y, WEI J, et al. Design of amphiphilic ABC triblock copolymer for templating synthesis of large-pore ordered mesoporous carbons with tunable pore wall thickness. Chem. Mater., 2009, 21(17): 3996-4005. |
[47] | WEI J, DENG Y,ZHANG J, et al. Large-pore ordered mesoporous carbons with tunable structures and pore sizes templated from poly(ethylene oxide)-b-poly(methyl methacrylate). Solid State Sci., 2011, 13(4): 784-792. |
[48] | SMARSLY B, GROSSO D, BREZESINSKI T, et al. Highly crystalline cubic mesoporous TiO2 with 10-nm pore diameter made with a new block copolymer template. Chem. Mater., 2004, 16(15): 2948-2952. |
[49] | BREZESINSKI T, GROENEWOLT M, GIBAUD A, et al. Evaporation-induced self-assembly (EISA) at its limit: ultrathin, crystalline patterns by templating of micellar monolayers. Adv. Mater., 2006, 18(17): 2260-2263. |
[50] | FATTAKHOVA-ROHLFING D, WARK M, BREZESINSKI T, et al. Highly organized Mesoporous TiO2 films with controlled crystallinity: A Li-insertion study. Adv. Funct. Mater., 2007, 17(1): 123-132. |
[51] | LEE J, CHRISTOPHER ORILALL M, WARREN S C, et al. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater., 2008, 7(3): 222-228. |
[52] | ZHANG J, DENG Y, GU D, et al. Ligand-assisted assemblyapproach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline Framework. Adv. Energy Mater., 2011, 1(2): 241-248. |
[53] | KUEMMEL M, GROSSO D,BOISSIRE C, et al. Thermally stable nanocrystalline γ-alumina layers with highly ordered 3D mesoporosity. Angew. Chem. Int. Ed., 2005, 44(29): 4589-4592. |
[54] | BREZESINSKI T, FATTAKHOVAβROHLFING D, SALLARD S, et al. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance. Small, 2006, 2(10): 1203-1211. |
[55] | LI Y, LUO W, QIN N, et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem. Int. Ed., 2014, 53(34): 9035-9040. |
[56] | PARK T, AHN S, ROH D, et al. Multifunctional organized mesoporous tin oxide films templated by graft copolymers for dye-Sensitized solar cells. ChemSusChem, 2014, 7(7): 2037-2047. |
[57] | BREZESINSKI T, WANG J,SENTER R, et al. On the correlation between mechanical flexibility, nanoscale structure, and charge storage in periodic mesoporous CeO2 thin films. ACS Nano, 2010, 4(2): 967-977. |
[58] | BREZESINSKI T, ANTONIETTI M, GROENEWOLT M, et al. The generation of mesostructured crystalline CeO2, ZrO2 and CeO2-ZrO2 films using evaporation-induced self-assembly. New J. Chem., 2005, 29(1): 237-242. |
[59] | FANG H, WAN T, SHI W, et al. Design and synthesis of large-pore p6mm mesoporus zirconia thin films templated by a novel block copolymer. J. Non-Cryst. Solids, 2007, 353(16/17): 1657-1661. |
[60] | ORTEL E, REIER T, STRASSER P, et al. Mesoporous IrO2 films templated by PEO-PB-PEO block-copolymers: self-assembly, crystallization behavior, and electrocatalytic performance. Chem. Mater., 2011, 23(13): 3201-3209. |
[61] | YAMAUCHI Y, SUGIYAMA A, MORIMOTO R, et al. Mesoporous platinum with giant mesocages templated from lyotropic liquid crystals consisting of diblock copolymers. Angew. Chem. Int. Ed., 2008, 47(29): 5371-5373. |
[62] | TAKAI A, YAMAUCHI Y, KURODA K.Tailored electrochemical synthesis of 2D-hexagonal, lamellar, and cage-type mesostructured Pt thin films with extralarge periodicity.J. Am. Chem. Soc., 2010, 132(1): 208-214. |
[63] | LIN Y, DAGA V K, ANDERSON E R, et al. Nanoparticle-driven assembly of clock copolymers: a simple route to ordered hybrid materials. J. Am. Chem. Soc., 2011, 133(17): 6513-6516. |
[64] | HSUEH H Y, HUANG Y C, HO R M, et al. Nanoporous gyroid nickel from block copolymer templates via electroless plating. Adv. Mater., 2011, 23(27): 3041-3046. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | ZHOU Houlin, SONG Zhiqing, TIAN Guo, GAO Xingsen. Effects of Growth Conditions on the Formation of Self-assembly Grown Topological Domain in BiFeO3 Nanoislands [J]. Journal of Inorganic Materials, 2025, 40(6): 667-674. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||