无机材料学报

• 研究论文 • 上一篇    下一篇

高熵稀土氧化物热障涂层材料弹性及热物性的第一性原理研究

王禹贺1,2, 罗颐秀1, 郭会明3, 张广珩4, 张思岩4, 孙鲁超1, 王杰民1, 王京阳1   

  1. 1.中国科学院 金属研究所,沈阳 110016;
    2.中国科学技术大学 材料科学与工程学院, 沈阳 110016;
    3.中国航发四川燃气涡轮研究院,成都 610500;
    4.辽宁材料实验室 燃氢防护技术研究所,沈阳 110167
  • 收稿日期:2025-06-27 修回日期:2025-08-22
  • 作者简介:王禹贺(2001-), 男, 硕士研究生. E-mail: yhwang23s@imr.ac.cn
  • 基金资助:
    国家重点研发计划(2021YFB3702303); 辽宁省自然科学基金计划项目(2024-MSBA-73); 中国航空发动机集团产学研合作项目(HFZL2023CXY022); 中国科学院金属研究所创新基金项目(2023-PY01)

First-Principles Investigation of Elastic and Thermophysical Properties of High-Entropy Rare-Earth Oxide Thermal Barrier Coating Materials

WANG Yuhe1,2, LUO Yixiu1, Guo Huiming3, ZHANG Guangheng4, ZHANG Siyan4, SUN Luchao1, WANG Jiemin1, WANG Jingyang1   

  1. 1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
    2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;
    3. AECC Sichuan Gas Turbine Research Establishment, Chengdu 610500, China;
    4. Institute of Coating Technology for Hydrogen Gas Turbines, Liaoning Academy of Materials, Shenyang 110167, China
  • Received:2025-06-27 Revised:2025-08-22
  • About author:WANG Yuhe (2001–), male, Master candidate. E-mail: yhwang23s@imr.ac.cn
  • Supported by:
    National Key R&D Program of China(2021YFB3702303); Natural Science Foundation Program of Liaoning Province (2024-MSBA-73); Industry-University-Research Cooperation Project of AECC(HFZL2023CXY022); IMR Innovation Fund (2023-PY01)

摘要: 连续纤维增强碳化硅陶瓷基复合材料应用于高推重比航空发动机热端部件需采用热/环境障涂层进行防护,为了得到兼具低热导率、适配的热膨胀系数适配及良好的高温相稳定性的新型稀土氧化物热障涂层材料,高熵化设计概念为其成分设计和性能调控提供了新思路和新契机。本研究针对复杂高熵陶瓷体系的结构建模和性能预测难题,提出了一种基于特殊准随机结构法(SQS)的新型高熵建模策略。该方法在保证计算精度的同时,实现了对复杂结构陶瓷性能的快速预测。随后,通过结合第一性原理计算方法,预测并比较了四种高熵稀土氧化物材料的晶体结构、弹性性质及热物理性质,重点揭示了不同稀土成分及Hf掺杂对材料低热导率性能的调控作用及原子尺度根源。研究结果为航空发动机热端部件用热/环境障涂层材料的理论模拟和选材设计提供科学思路与基础数据。

关键词: 高熵稀土氧化物, 热障涂层, 第一性原理, 弹性性质, 热物理性质

Abstract: Continuous fiber-reinforced silicon carbide ceramic matrix composites utlized in hot-section components of high thrust-to-weight ratio aero-engines require protection via thermal/environmental barrier coatings. To develop novel rare-earth oxide thermal barrier coatings materials with low thermal conductivity, compatible thermal expansion coefficients, and excellent high-temperature phase stability, the introduction of the high-entropy design concept offers a promising approach and opportunity for composition design and performance optimization. Addressing the challenges of structural modeling and property prediction for complex high-entropy ceramic systems, this study first introduces a novel high-entropy ceramic modeling strategy based on the Special Quasi-random Structure(SQS) method. This strategy facilitates the rapid prediction of complex ceramic properties while maintaining computational accuracy. Subsequently, the crystal structures, elastic properties, and thermophysical characteristics of four high-entropy rare-earth oxide materials are predicted and compared by integrating first-principles calculations. The research particularly aims to elucidate the regulatory effects and atomic-scale origins of different rare-earth compositions and Hf doping on the material's low thermal conductivity performance. The research results provide scientific insights and fundamental data for the theoretical simulation and material selection design of thermal/environmental barrier coatings for aero-engine hot-section components.

Key words: high-entropy rare-earth oxide, thermal barrier coating, first-principle, elastic property, thermophysical

中图分类号: