无机材料学报 ›› 2025, Vol. 40 ›› Issue (2): 215-224.DOI: 10.15541/jim20240322 CSTR: 32189.14.10.15541/jim20240322
• 研究快报 • 上一篇
叶君豪1,2(), 周真真1,2, 胡辰1,2, 王雁斌1,2, 荆延秋1,2, 李廷松1,2, 程梓秋1,2, 吴俊林1,2, IVANOV Maxim3,4, HRENIAK Dariusz5, 李江1,2(
)
收稿日期:
2024-07-08
修回日期:
2024-09-07
出版日期:
2025-02-20
网络出版日期:
2024-09-23
通讯作者:
李 江, 研究员. E-mail: lijiang@mail.sic.ac.cn作者简介:
叶君豪(2000-), 男, 硕士研究生. E-mail: yejunhao22@mails.ucas.ac.cn
YE Junhao1,2(), ZHOU Zhenzhen1,2, HU Chen1,2, WANG Yanbin1,2, JING Yanqiu1,2, LI Tingsong1,2, CHENG Ziqiu1,2, WU Junlin1,2, IVANOV Maxim3,4, HRENIAK Dariusz5, LI Jiang1,2(
)
Received:
2024-07-08
Revised:
2024-09-07
Published:
2025-02-20
Online:
2024-09-23
Contact:
LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cnAbout author:
YE Junhao (2000-), male, Master candidate. E-mail: yejunhao22@mails.ucas.ac.cn
Supported by:
摘要:
Sc2O3作为固体激光增益材料的基质, 具有热导率高、与激活离子匹配性好等优点, 在高功率固体激光应用中有着广阔的应用前景。目前, Yb掺杂的Sc2O3陶瓷可以在很高的烧结温度下合成, 但陶瓷的光学质量和烧结温度还有待进一步优化。本研究采用碳酸氢铵共沉淀法制备了分散性好、平均晶粒尺寸29 nm的立方相5%Yb:Sc2O3(掺杂量为质量分数)纳米粉体, 并采用真空预烧结和热等静压(Hot Isostatic Pressing, HIP)后处理制备了5%Yb:Sc2O3透明陶瓷, 详细研究了真空预烧结温度(1500~1700 ℃)对Yb:Sc2O3陶瓷的致密化过程、微观结构变化及光学透过率的影响。结果表明, 所有样品均具有均匀的微观结构, 且随着烧结温度的升高, 样品的平均晶粒尺寸增大。值得注意的是, 1550 ℃预烧的Yb:Sc2O3陶瓷经HIP后处理后, 在1100 nm处的最佳直线透过率达到78.1%(理论值为80%)。同时, 还评估了Yb:Sc2O3陶瓷的光谱性能。5%Yb:Sc2O3陶瓷的最小粒子数反转参数β2和发光衰减时间分别为0.041和0.49 ms。综上所述, 采用共沉淀法成功制备了Yb:Sc2O3纳米粉体, 通过1550 ℃真空预烧结和HIP后处理得到光学质量良好的Yb:Sc2O3透明陶瓷。
中图分类号:
叶君豪, 周真真, 胡辰, 王雁斌, 荆延秋, 李廷松, 程梓秋, 吴俊林, IVANOV Maxim, HRENIAK Dariusz, 李江. 共沉淀纳米粉体制备Yb:Sc2O3透明陶瓷的微结构与光学性能[J]. 无机材料学报, 2025, 40(2): 215-224.
YE Junhao, ZHOU Zhenzhen, HU Chen, WANG Yanbin, JING Yanqiu, LI Tingsong, CHENG Ziqiu, WU Junlin, IVANOV Maxim, HRENIAK Dariusz, LI Jiang. Yb:Sc2O3 Transparent Ceramics Fabricated from Co-precipitated Nano-powders: Microstructure and Optical Property[J]. Journal of Inorganic Materials, 2025, 40(2): 215-224.
Sample | SBET/(m2·g-1) | DBET/nm | DSEM/nm | DXRD/nm | N1 |
---|---|---|---|---|---|
5%Yb:Sc2O3 nano-powders | 25 | 58 | 43 | 29 | 6 |
Table 1 Analysis of particle size and agglomeration degree of 5%Yb:Sc2O3 nano-powders
Sample | SBET/(m2·g-1) | DBET/nm | DSEM/nm | DXRD/nm | N1 |
---|---|---|---|---|---|
5%Yb:Sc2O3 nano-powders | 25 | 58 | 43 | 29 | 6 |
Fig. 4 FESEM micrographs of thermally etched surfaces of the 5%Yb:Sc2O3 ceramics pre-sintered at different temperatures (a) 1500 ℃; (b) 1550 ℃; (c) 1600 ℃; (d) 1650 ℃; (e) 1700 ℃
Fig. 6 FESEM micrographs of thermally etched surfaces of the synthesized 5%Yb:Sc2O3 ceramics Ceramics pre-sintered at (a) 1500, (b) 1550, (c) 1600, (d) 1650, and (e) 1700 ℃ before HIP post-treatment at 1700 ℃
Fig. 9 Absorption and emission cross-sections of the 5%Yb:Sc2O3 transparent ceramics pre-sintered at 1550 ℃ with HIP post-treatment Colorful figure is available on website
[1] | ZUO J, LIN X. High-power laser systems. Laser & Photonics Reviews, 2022, 16(5): 2100741. |
[2] | LIU Z Y, IKESUE A, LI J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics. Journal of the European Ceramic Society, 2021, 41(7): 3895. |
[3] | DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering, 2019, 7: e54. |
[4] | SÄNGER J C, PAUW B R, RIECHERS B, et al. Entering a new dimension in powder processing for advanced ceramics shaping. Advanced Materials, 2023, 35(8): 2208653. |
[5] | WANG X, YU H, LI P, et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: a review. Optics & Laser Technology, 2021, 135: 106687. |
[6] | ORAZI L, ROMOLI L, SCHMIDT M, et al. Ultrafast laser manufacturing: from physics to industrial applications. CIRP Annals, 2021, 70(2): 543. |
[7] | GODARD A. Infrared (2-12 μm) solid-state laser sources: a review. Comptes Rendus. Physique, 2007, 8(10): 1100. |
[8] | BRENIER A, BOULON G. Overview of the best Yb3+-doped laser crystals. Journal of Alloys and Compounds, 2001, 323/324: 210. |
[9] | BOULON G. Why so deep research on Yb3+-doped optical inorganic materials? Journal of Alloys and Compounds, 2008, 451(1/2): 1. |
[10] | RADMARD S, MOSHAII A, PASANDIDEH K. 400 W average power Q-switched Yb:YAG thin-disk-laser. Scientific Reports, 2022, 12(1): 16918. |
[11] | PERMIN D A, KURASHKIN S V, NOVIKOVA A V, et al. Synthesis and luminescence properties of Yb-doped Y2O3, Sc2O3 and Lu2O3 solid solutions nanopowders. Optical Materials, 2018, 77: 240. |
[12] | LI W W, HUANG H J, MEI B C, et al. Effect of Yb concentration on the microstructures, spectra, and laser performance of Yb:CaF2 transparent ceramics. Journal of the American Ceramic Society, 2020, 103(10): 5787. |
[13] | SHANG P, BAI L, WANG S, et al. Research progress on thermal effect of LD pumped solid state laser. Optics & Laser Technology, 2023, 157: 108640. |
[14] | TOCI G, HOSTAŠA J, PATRIZI B, et al. Fabrication and laser performances of Yb:Sc2O3 transparent ceramics from different combination of vacuum sintering and hot isostatic pressing conditions. Journal of the European Ceramic Society, 2020, 40(3): 881. |
[15] | PERMIN D A, BALABANOV S S, SNETKOV I L, et al. Hot pressing of Yb:Sc2O3 laser ceramics with LiF sintering aid. Optical Materials, 2020, 100: 109701. |
[16] | DAI Z F, LIU Q, TOCI G, et al. Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders. Journal of the European Ceramic Society, 2018, 38(4): 1632. |
[17] | MCMILLEN C D, KOLIS J W. Hydrothermal single crystal growth of Sc2O3 and lanthanide-doped Sc2O3. Journal of Crystal Growth, 2008, 310(7/8/9): 1939. |
[18] | FORNASIERO L, MIX E, PETERS V, et al. Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3. Ceramics International, 2000, 26(6): 589. |
[19] | LU J, BISSON J F, TAKAICHI K, et al. Yb3+:Sc2O3 ceramic laser. Applied Physics Letters, 2003, 83(6): 1101. |
[20] | MERKLE L D, NEWBURGH G A, TER-GABRIELYAN N, et al. Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3. Optics Communications, 2008, 281(23): 5855. |
[21] | LIU Q, DAI Z F, HRENIAK D, et al. Fabrication of Yb:Sc2O3 laser ceramics by vacuum sintering co-precipitated nano-powders. Optical Materials, 2017, 72: 482. |
[22] | MA M Z, DONG L L, JING W, et al. Fabrication of transparent Yb:Sc2O3 ceramics by hot isostatic pressing without sintering additive. IOP Conference Series: Materials Science and Engineering, 2019, 678(1): 12080. |
[23] | JIANG B X, HU C, LI J, et al. Synthesis and properties of Yb:Sc2O3 transparent ceramics. Journal of Rare Earths, 2011, 29(10): 951. |
[24] | GHEORGHE C, LUPEI A, LUPEI V, et al. Intensity parameters of Tm3+ doped Sc2O3 transparent ceramic laser material. Optical Materials, 2011, 33(3): 501. |
[25] | PERMIN D A, GAVRISHCHUK E M, KLYUSIK O N, et al. Self-propagating high-temperature synthesis of Sc2O3 nanopowders using different precursors. Advanced Powder Technology, 2016, 27(6): 2457. |
[26] | BRAVO A C, LONGUET L, AUTISSIER D, et al. Influence of the powder preparation on the sintering of Yb-doped Sc2O3 transparent ceramics. Optical Materials, 2009, 31(5): 734. |
[27] | POIROT N, BREGIROUX D, BOY P, et al. Sintering of nanostructured Sc2O3 ceramics from Sol-Gel-derived nanoparticles. Ceramics International, 2015, 41(3): 3879. |
[28] | DONG L L, MA M Z, JING W, et al. Synthesis of highly sinterable Yb:Lu2O3 nanopowders via spray co-precipitation for transparent ceramics. Ceramics International, 2019, 45(15): 19554. |
[29] | LI J S, SUN X D, LIU S H, et al. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics. Ceramics International, 2015, 41(2): 3283. |
[30] | DAI Z, LIU Q, HRENIAK D, et al. Fabrication of Yb:Sc2O3 transparent ceramics from co-precipitated nanopowders: The effect of ammonium hydrogen carbonate to metal ions molar ratio. Optical Materials, 2018, 75: 673. |
[31] | WANG Y, LU B, SUN X, et al. Synthesis of nanocrystalline Sc2O3 powder and fabrication of transparent Sc2O3 ceramics. Advances in Applied Ceramics, 2013, 110(2): 95. |
[32] | SERIVALSATIT K, BALLATO J. Submicrometer grain-sized transparent erbium-doped scandia ceramics. Journal of the American Ceramic Society, 2010, 93(11): 3657. |
[33] | MAYO M J, HAGUE D C, CHEN D J. Processing nanocrystalline ceramics for applications in superplasticity. Materials Science and Engineering: A, 1993, 166(1): 145. |
[34] | KIM W, BAKER C, VILLALOBOS G, et al. Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers. Journal of the American Ceramic Society, 2011, 94(9): 3001. |
[35] | JIANG N, LIN W P, ZHAO Y, et al. Fabrication and kW-level MOPA laser output of planar waveguide YAG/Yb:YAG/YAG ceramic slab. Journal of the American Ceramic Society, 2018, 102(4): 1758. |
[36] | LI X, ZHANG L, HU D, et al. Fabrication and characterizations of Tb3Al5O12-based magneto-optical ceramics. International Journal of Applied Ceramic Technology, 2022, 20(1): 493. |
[37] | WANG Y, SUN X D, QIU G M. Synthesis of scandium oxide nano power and fabrication of transparent scandium oxide ceramics. Journal of Rare Earths, 2007, 25: 68. |
[38] | LU B, WANG Y, SUN X D, et al. Synthesis of Sc2O3 nanopowders and fabrication of transparent, two-step sintered Sc2O3 ceramics. Advances in Applied Ceramics, 2013, 111(7): 389. |
[39] | LI J G, IKEGAMI T, MORI T. Fabrication of transparent, sintered Sc2O3 ceramics. Journal of the American Ceramic Society, 2005, 88(4): 817. |
[40] | LU X, JIANG B X, LI J, et al. Synthesis of highly sinterable Yb:Sc2O3 nanopowders for transparent ceramic. Ceramics International, 2013, 39(4): 4695. |
[41] | FU G Y, WEI J M, CHEN S X, et al. Preparation of spherical scandium oxide powders by ammonium bicarbonate precipitation. Rare Metal Materials and Engineering, 2023, 52(10): 3417. |
[42] | MONSHI A, FOROUGHI M R, MONSHI M R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2(3): 154. |
[43] | CAO W B, MAO X, YUAN Y, et al. Sintering kinetics of disperse ultrafine equiaxed α-Al2O3 nanoparticles. Journal of the European Ceramic Society, 2017, 37(13): 4005. |
[44] | SEELEY Z M, KUNTZ J D, CHEREPY N J, et al. Transparent Lu2O3:Eu ceramics by sinter and HIP optimization. Optical Materials, 2011, 33(11): 1721. |
[45] | LIU Q, JING Y Q, SU S, et al. Microstructure and properties of MgAl2O4 transparent ceramics fabricated by hot isostatic pressing. Optical Materials, 2020, 104: 109938. |
[46] | TAKAICHI K, YAGI H, BECKER P, et al. New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxide: two-band tunable CW generation of Yb3+:Sc2O3 with laser-diode pumping and the dispersion of refractive index in the visible and near-IR of undoped Sc2O3. Laser Physics Letters, 2007, 4(7): 507. |
[47] | KRELL A, KLIMKE J, HUTZLER T. Transparent compact ceramics: inherent physical issues. Optical Materials, 2009, 31(8): 1144. |
[48] | DELOACH L D, PAYNE S A, CHASE L L, et al. Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications. IEEE Journal of Quantum Electronics, 1993, 29(4): 1179. |
[49] | LU S Z, YANG Q H. Spectroscopic characterization of Yb:Sc2O3 transparent ceramics. Chinese Physics B, 2012, 21(4): 47801. |
[50] | LIU Z Y, TOCI G, PIRRI A, et al. Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders. Journal of Advanced Ceramics, 2020, 9(6): 674. |
[51] | FORNASIERO L, MIX E, PETERS V, et al. New oxide crystals for solid state lasers. Crystal Research and Technology, 1999, 34(2): 255. |
[52] | GALCERAN M, PUJOL M C, CARVAJAL J J, et al. Structural characterization and ytterbium spectroscopy in Sc2O3 nanocrystals. Journal of Luminescence, 2010, 130(8): 1437. |
[1] | 吕朝阳, 徐勇, 杨久延, 涂广升, 涂兵田, 王皓. MgF2助剂对MgAl1.9Ga0.1O4透明陶瓷的制备与光学性能的影响[J]. 无机材料学报, 2024, 39(5): 531-538. |
[2] | 顾军毅, 范武刚, 张兆泉, 姚琴, 展红全. 还原制备Pr2O3粉体及其结构和光学性能研究[J]. 无机材料学报, 2023, 38(7): 771-777. |
[3] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. |
[4] | 吴俊林, 丁继扬, 黄新友, 朱丹阳, 黄东, 代正发, 杨文钦, 蒋兴奋, 周健荣, 孙志嘉, 李江. Gd2O2S:Tb闪烁陶瓷的制备与结构: 水浴合成中H2SO4/Gd2O3摩尔比的影响[J]. 无机材料学报, 2023, 38(4): 452-460. |
[5] | 靳喜海, 董满江, 阚艳梅, 梁波, 董绍明. 透明AlON陶瓷凝胶浇注成型及其无压烧结制备[J]. 无机材料学报, 2023, 38(2): 193-198. |
[6] | 王海东, 王燕, 朱昭捷, 李坚富, LAKSHMINARAYANA Gandham, 涂朝阳. Dy3+掺杂SrGdGa3O7晶体的晶体生长, 结构、光学和可见光荧光特性[J]. 无机材料学报, 2023, 38(12): 1475-1482. |
[7] | 汪德文, 王俊平, 袁厚呈, 刘章, 周进, 邓佳杰, 王鑫, 吴贲华, 章健, 王士维. 真空反应烧结制备米级尺寸钇铝石榴石(YAG)透明陶瓷[J]. 无机材料学报, 2023, 38(12): 1483-1484. |
[8] | 李文俊, 王皓, 涂兵田, 谌强国, 郑凯平, 王为民, 傅正义. 宽光谱透过Mg0.9Al2.08O3.97N0.03透明陶瓷的制备与性能研究[J]. 无机材料学报, 2022, 37(9): 969-975. |
[9] | 母利成, 杨金萍, 王俊平, 赵瑾, 刘梦玮, 汪德文, 章健. 环氧树脂改性自发凝固成型制备YAG透明陶瓷[J]. 无机材料学报, 2022, 37(9): 941-946. |
[10] | 刘强, 王倩, 陈鹏辉, 李晓英, 章立轩, 谢腾飞, 李江. 两步烧结法制备红色Ce:8YSZ透明陶瓷及其性能研究[J]. 无机材料学报, 2022, 37(8): 911-917. |
[11] | 肖舒琳, 戴中华, 李定妍, 张凡博, 杨利红, 任晓兵. 氧化镧掺杂铌酸钾钠陶瓷的电、光性能研究[J]. 无机材料学报, 2022, 37(5): 520-526. |
[12] | 荆延秋, 刘强, 苏莎, 李晓英, 刘子玉, 王静雅, 李江. 1.5 μm被动调Q可饱和吸收体用Co:MgAl 2O4透明陶瓷的制备[J]. 无机材料学报, 2021, 36(8): 877-882. |
[13] | 曾建军, 张魁宝, 陈代梦, 郭海燕, 邓婷, 刘奎. 真空烧结制备(La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7高熵透明陶瓷[J]. 无机材料学报, 2021, 36(4): 418-424. |
[14] | 孙娅楠, 叶丽, 赵文英, 陈凤华, 邱文丰, 韩伟健, 刘伟, 赵彤. 液相聚合物前驱体法制备高熵碳化物纳米粉体[J]. 无机材料学报, 2021, 36(4): 393-398. |
[15] | 刘子玉, TOCI Guido, PIRRI Angela, PATRIZI Barbara, 冯亚刚, 陈肖朴, 胡殿君, 田丰, 吴乐翔, VANNINIMatteo, 李江. 固体激光用Nd:Lu2O3透明陶瓷的制备和光学性能研究[J]. 无机材料学报, 2021, 36(2): 210-216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||