[1] |
FU ZHENGYI, GU JUNFENG, ZOU JI, et al. Recent progress in high-entropy ceramic materials. Materials China, 2019,38(9):855-865.
|
[2] |
YEH JIENWEI, CHEN SWEKAI, SUJIEN LIN, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303.
|
[3] |
CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004,375:213-218.
|
[4] |
NIU CHANGNING, LAROSA CARLYN R, MIAO JIASHI, et al. Magnetically-driven phase transformation strengthening in high entropy alloys. Nature Communications, 2018,9(1):1363.
URL
PMID
|
[5] |
PRAVEEN S, KIM H S. High-entropy alloys: potential candidates for high-temperature applications-an overview. Advanced Engineering Materials, 2018,20(1):1700645.
|
[6] |
MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017,122:448-511.
DOI
URL
|
[7] |
YEH J. Recent progress in high-entropy alloys. Annales De Chimie-Science Des Materiaux, 2006,31(6):633-648.
|
[8] |
CHUANG MINGHAO, TSAI MINGHUNG, WANG WOEIREN, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 2011,59(16):6308-6317.
DOI
URL
|
[9] |
LI ZHIMING, PRADEEP K G, DENG YUN, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016,534(7606):227-230.
URL
PMID
|
[10] |
BUTLER T M, ALFANO J P, MARTENS R L, et al. High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys. JOM, 2014,67(1):246-259.
|
[11] |
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015,6(1):8485.
|
[12] |
CHELLALI M R, SARKAR A, NANDAM S H, et al. On the homogeneity of high entropy oxides: an investigation at the atomic scale. Scripta Materialia, 2019,166:58-63.
|
[13] |
LEI ZHIFENG, LIU XIONGJUN, WANG HUI, et al. Development of advanced materials via entropy engineering. Scripta Materialia, 2019,165:164-169.
|
[14] |
JIANG SICONG, HU TAO, GILD JOSHUA, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018,142:116-120.
|
[15] |
DJENADIC R, SARKAR A, CLEMENS O, et al. Multicomponent equiatomic rare earth oxides. Materials Research Letters, 2016,5(2):102-109.
|
[16] |
BRAIC V, VLADESCU A, BALACEANU M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surface and Coatings Technology, 2012,211:117-121.
|
[17] |
JIN T, SANG X, UNOCIC R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 2018,30(23):1707512.
|
[18] |
WEI XIAO-FENG, LIU JI-XUAN, LI FEI, et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 2019,39:2989-2994.
|
[19] |
YAN XUELIANG, CONSTANTIN LOIC, LU YONGFENG, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 2018,101(10):4486-4491.
|
[20] |
GILD J, BRAUN J, KAUFMANN K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 2019,5(3):337-343.
|
[21] |
MAYRHOFER P H, KIRNBAUER A, ERTELTHALER P, et al. High-entropy ceramic thin films; a case study on transition metal diborides. Scripta Materialia, 2018,149:93-97.
|
[22] |
LIU DA, WEN TONGQI, YE BEILIN, et al. Synthesis of superfine high-entropy metal diboride powders. Scripta Materialia, 2019,167:110-114.
|
[23] |
SUBRAMANIAN M A, ARAVAMUDAN G, RAO G V. Oxide pyrochlores—a review. Progress in Solid State Chemistry, 1983,15(2):55-143.
|
[24] |
TROJAN P J, ZYCH E, KOSIŃSKA M. Fabrication and spectroscopic properties of nanocrystalline La2Hf2O7: Pr. Radiation Measurements, 2010,45(3):432-434.
|
[25] |
WHITTLE K R, CRANSWICK L M D, REDFERN S A T, et al. Lanthanum pyrochlores and the effect of yttrium addition in the systems La2-xYxZr2O7 and La2-xYxHf2O7. Journal of Solid State Chemistry, 2009,182(3):442-450.
|
[26] |
WANG ZHENGJUAN, ZHOU GUOHONG, JIANG DANYU, et al. Recent development of A2B2O7 system transparent ceramics. Journal of Advanced Ceramics, 2018,7(4):289-306.
|
[27] |
SU S J, DING Y, SHU X Y, et al. Nd and Ce simultaneous substitution driven structure modifications in Gd2-xNdxZr2-yCeyO7, Journal of the European Ceramic Society, 2014,35(6):1847-1853.
|
[28] |
LI FEI, ZHOU LIN, LIU JIXUAN, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582.
|
[29] |
HE ZONGSHENG, ZHANG KUIBAO, XUE JIALI, et al. Self-propagation high-temperature synthesis of Sm-doped pyrochlores ceramic form and its aqueous durability. Materials Reports, 2018,32(32):247-250.
|
[30] |
SICKAFUS K E, MINERVINI L, GRIMES R W, et al. Radiation tolerance of complex oxides. Science, 2000,289:748-751.
URL
PMID
|
[31] |
EL-ATWANI O, LI N, LI M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Science Advances, 2019,5(3):eaav2002.
URL
PMID
|
[32] |
KAREER A, WAITE J C, LI B, et al. Low activation, refractory, high entropy alloys for nuclear applications, Journal of Nuclear Materials, 2019,526:151744.
|
[33] |
JI YAMING, JIANG DANYU, FEN TAO, et al. Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders. Materials Research Bulletin, 2005,40(3):553-559.
|
[34] |
ZHAO WENWEN, ZHANG KUIBAO, LI WEIWEI, et al. Fabrication and optical properties of transparent LaErZr2O7 ceramic with high excess contents of La and Er. Ceramics International, 2019,45(9):11717-11722.
|
[35] |
WANG ZHENGJUAN, ZHOU GUOHONG, QIN XIANPENG, et al. Fabrication and phase transition of La2-xLuxZr2O7 transparent ceramics. Journal of the European Ceramic Society, 2014,34(15):3951-3958.
|
[36] |
WANG ZHENGJUAN, ZHOU GUOHONG, ZHANG FANG, et al. Fabrication and properties of La2-xGdxHf2O7 transparent ceramics. Journal of Luminescence, 2016,169:612-615.
|
[37] |
YI HAILAN, ZOU XIAOQING, YANG YAN, et al. Fabrication of highly transmitting LaGdHf2O7 ceramics. Journal of the American Ceramic Society, 2011,94(12):4120-4122.
|
[38] |
ZHOU GUOHONG, WANG ZHENGJUAN, ZHOU BOZHU, et al. Fabrication of transparent Y2Hf2O7 ceramics via vacuum sintering. Optical Materials, 2013,35(4):774-777.
|
[39] |
HU Y L, BAI L H, TONG Y G, et al. First-principle calculation investigation of NbMoTaW based refractory high entropy alloys. Journal of Alloys and Compounds, 2020,827:153963.
|
[40] |
ZHANG GUANGRAN, MILISAVLJEVIC IVA, ZYCH EUGENIUSZ, et al. High-entropy sesquioxide X2O3 upconversion transparent ceramics. Scripta Materialia, 2020,186:19-23.
|
[41] |
CHEN XIANQIANG, WU YIQUAN. High-entropy transparent fluoride laser ceramics. Journal of the American Ceramic Society, 2019,103(2):750-756.
|
[42] |
ZHANG KUIBAO, LI WEIWEI, ZENG JIANJUN, et al. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder. Journal of Alloys and Compounds, 2020,817(15):153328.
|
[43] |
LI WEIWEI, ZHANG KUIBAO, ZHAO WENWEN, et al. Vacuum sintering and optical properties of Gd2-xNdxZr2O7 transparent ceramics using combustion synthesized nanopowders. Optical Materials, 2020,100:109622.
|
[44] |
LI WEIWEI, ZHANG KUIBAO, XIE DAYAN, et al. Characterizations of vacuum sintered Gd2Zr2O7 transparent ceramics using combustion synthesized nanopowder. Journal of the European Ceramic Society, 2020,40(4):1665-1670.
|
[45] |
LEE Y H, SHEU H S, DENG J P, et al. Preparation and fluorite- pyrochlore phase transformation in Gd2Zr2O7. Journal of Alloys and Compounds, 2009,487:595-598.
DOI
URL
|
[46] |
GLERUP M, NIELSEN O F, POULSEN F W. The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by raman spectroscopy and defect chemistry modeling. Journal of Solid State Chemistry, 2001,160(1):25-32.
|
[47] |
ZOU XIAOQING, ZHOU GUOHONG, YI HAILAN, et al. Fabrication of transparent Y2Hf2O7 ceramic from combustion synthesized powders. Journal of Inorganic Materials, 2011,26:929-932.
|
[48] |
GUPTA S K, REGHUKUMAR C, SUDARSHAN K, et al. Orange-red emitting Gd2Zr2O7:Sm3+: structure-property correlation, optical properties and defect spectroscopy . Journal of Physics and Chemistry of Solids, 2018,116:360-366.
|
[49] |
TROJAN-PIEGZA J, BRITES C D S, RAMALHO J F C B. et al. La0.4Gd1.6Zr2O7:0.1%Pr transparent sintered ceramic-a wide-range luminescence thermometer. Journal of Materials Chemistry C, 2020,8:7005-7011.
|