无机材料学报 ›› 2024, Vol. 39 ›› Issue (12): 1316-1324.DOI: 10.15541/jim20240190 CSTR: 32189.14.10.15541/jim20240190
所属专题: 【能源环境】热电材料(202412)
田震1(), 蒋全伟1, 李建波1, 于砺锋1, 康慧君1,2(
), 王同敏1,2
收稿日期:
2024-04-12
修回日期:
2024-06-06
出版日期:
2024-07-03
网络出版日期:
2024-07-03
通讯作者:
康慧君, 教授. E-mail: kanghuijun@dlut.edu.cn作者简介:
田 震(1994-), 男, 博士研究生. E-mail: drtianzhen@mail.dlut.eud.cn
基金资助:
TIAN Zhen1(), JIANG Quanwei1, LI Jianbo1, YU Lifeng1, KANG Huijun1,2(
), WANG Tongmin1,2
Received:
2024-04-12
Revised:
2024-06-06
Published:
2024-07-03
Online:
2024-07-03
Contact:
KANG Huijun, professor. E-mail: kanghuijun@dlut.edu.cnAbout author:
TIAN Zhen (1994-), male, PhD candidate. E-mail: drtianzhen@mail.dlut.eud.cn
Supported by:
摘要:
作为一种能够同时制备具有相同化学成分的n型与p型热电材料, BiSbSe1.50Te1.50材料在开发设计性能优良的热电器件方面具有极大的应用潜力。但其电导率较低, 热电性能较差, 阻碍了进一步推广应用。因此, 在保持较低热导率的前提下, 提升BiSbSe1.50Te1.50的电输运性能, 对改善其热电性能具有重要意义。本研究结合封管熔炼和真空热压烧结, 对n型BiSbSe1.50Te1.50进行多次重复热变形。研究发现, 热变形使样品产生大量具有择优排列方向和较大表面积的纳米层片, 使其不但可以保持较高载流子浓度, 而且具有高的载流子迁移率, 从而有效提高了BiSbSe1.50Te1.50的电导率。与此同时, 热变形还可以在样品中引入多尺度缺陷, 有效散射全尺度声子, 极大地降低了BiSbSe1.50Te1.50的热导率。因此, 热变形实现了样品电输运和热输运之间的解耦, 同时改善了电性能和热性能。在500 K时, BiSbSe1.50Te1.50的热电优值由未变形样品的0.21提高至0.50, 提升了约138%, 热电性能得到显著改善。本工作为制备具有较高转换效率和均匀结构的BiSbSe1.50Te1.50热电器件提供了基础。
中图分类号:
田震, 蒋全伟, 李建波, 于砺锋, 康慧君, 王同敏. 热变形协同优化BiSbSe1.50Te1.50材料电热输运[J]. 无机材料学报, 2024, 39(12): 1316-1324.
TIAN Zhen, JIANG Quanwei, LI Jianbo, YU Lifeng, KANG Huijun, WANG Tongmin. Simultaneous Optimization of Electrical and Thermal Transport Properties of BiSbSe1.50Te1.50 Thermoelectrics by Hot Deformation[J]. Journal of Inorganic Materials, 2024, 39(12): 1316-1324.
图3 HD0和HD2块体样品的织构测试图
Fig. 3 Texture patterns of HD0 and HD2 bulk samples (a) Pole figures along (006), (015), (1010), and (0018) directions; (b) Inverse pole figures (IPFs) and (c) orientation distribution function (ODF) patterns of HD0 and HD2 samples
图4 HD0、HD1和HD2样品的(a, c, e)断口SEM照片及(b, d, f)对应的3D重构图
Fig. 4 (a, c, e) SEM images of the fractured surface, and (b, d, f) the corresponding reconstructed 3D morphologies of HD0, HD1 and HD2 bulk samples (a, b) HD0; (c, d) HD1; (e, f) HD2
图5 HD0、HD1和HD2块体样品的电输运性能
Fig. 5 Electrical transport properties of HD0, HD1 and HD2 bulk samples (a) Seebeck coefficient S; (b) Electrical conductivity σ; (c) Carrier concentration nH and carrier mobility μH at 323 K; (d) Power factor PF
图6 HD0、HD1和HD2块体样品的本征电输运性质
Fig. 6 Intrinsic electrical transport properties of HD0, HD1 and HD2 bulk samples (a) nH-dependent |S|; (b) Carrier effective mass m* and reduced Fermi level η; (c) Temperature-dependent weighted carrier mobility μw
图7 HD0、HD1和HD2块体样品的热输运性能
Fig. 7 Thermal transport properties of HD0, HD1 and HD2 bulk samples (a) Total thermal conductivity κtotal; (b) Electrical thermal conductivity κele; (c) Sum of the lattice thermal conductivity and bipolar thermal conductivity κL+κb; (d) Ratio μw/(κL+κb) as a function of temperature
图8 HD0、HD1和HD2块体样品的热电优值
Fig. 8 ZT of HD0, HD1 and HD2 bulk samples (a, b) Temperature-dependent (a) quality factor B and (b) ZT; (c) Average ZT in the temperature range of 323-550 K
[1] | TIAN Z, WANG J, XIN B Y, et al. Pencil painting like preparation for flexible thermoelectric material of high-performance p-type Na1.4Co2O4 and novel n-type NaxCo2O4. Journal of Materiomics, 2021, 7(5):1153. |
[2] | LI Z, XIAO C, XIE Y. Layered thermoelectric materials: structure, bonding, and performance mechanisms. Applied Physics Reviews, 2022, 9(1):011303. |
[3] | MAO J, CHEN G, REN Z F. Thermoelectric cooling materials. Nature Materials, 2020, 20(4):454. |
[4] | ZHAO Y L, CHENG H L, LI Y X, et al. Quasi-solid conductive gels with high thermoelectric properties and high mechanical stretchability consisting of a low cost and green deep eutectic solvent. Journal of Materials Chemistry A, 2022, 10(8):4222. |
[5] |
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895):1457.
DOI PMID |
[6] | WANG S N, WANG D Y, SU L Z, et al. Realizing synergistic optimization of thermoelectric properties in n-type BiSbSe3 polycrystals via co-doping zirconium and halogen. Materials Today Physics, 2022, 22: 100608. |
[7] | ZHANG T D, DENG S P, ZHAO X D, et al. Regulation of Ge vacancies through Sm doping resulting in superior thermoelectric performance in GeTe. Journal of Materials Chemistry A, 2022, 10(7):3698. |
[8] | ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity. Journal of Materiomics, 2015, 1(2):92. |
[9] | HU L P, WU H J, ZHU T J, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride- based solid solutions. Advanced Energy Materials, 2015, 5(17):1500411. |
[10] | HU L P, GAO H L, LIU H L, et al. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. Journal of Materials Chemistry, 2012, 22(32):16484. |
[11] | XIE H H, YU C, ZHU T J, et al. Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates. Applied Physics Letters, 2012, 100(25):254104. |
[12] | QIU P F, YANG J, HUANG X Y, et al. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half- Heusler alloys. Applied Physics Letters, 2010, 96(15):152105. |
[13] | DASGUPTA T, STIEWE C, HASSDORF R, et al. Effect of vacancies on the thermoelectric properties of Mg2Si1-xSbx (0≤x≤0.1). Physical Review B, 2011, 83(23):235207. |
[14] | HU L P, ZHU T J, LIU H L, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Advanced Functional Materials, 2014, 24(33):5211. |
[15] | GAO H T, ZHAO K P, WULIJI H X G, et al. Adaptable sublattice stabilized high-entropy materials with superior thermoelectric performance. Energy Environmental Science, 2023, 16(12):6046. |
[16] | YU Y, HE D S, ZHANG S Y, et al. Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering. Nano Energy, 2017, 37: 203. |
[17] | QIN B C, ZHANG Y, WANG D Y, et al. Ultrahigh average ZT realized in p-type SnSe crystalline thermoelectrics through producing extrinsic vacancies. Journal of the American Chemical Society, 2020, 142(12):5901. |
[18] |
JIANG B B, YONG Y, CUI J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 2021, 371(6531):830.
DOI PMID |
[19] | POPURI S R, POLLET M, DECOURT R, et al. Large thermoelectric power factors and impact of texturing on the thermal conductivity in polycrystalline SnSe. Journal of Materials Chemistry C, 2016, 4(8):1685. |
[20] | FU C G, ZHU T J, LIU Y T, et al. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit ZT > 1. Energy Environmental Science, 2015, 8(1):216. |
[21] | CHEN H, FAN W H, AN D C, et al. Improvement of thermoelectric performance of SnTe by energy band optimization and carrier regulation. Journal of Inorganic Materials, 2024, 39(3):306. |
[22] | TIAN Z, JIANG Q W, LI J B, et al. Achieving n- and p-type thermoelectric materials with the identical chemical composition BiSbTe1.5Se1.5 by defect structure engineering. Chemical Engineering Journal, 2024, 494: 152954. |
[23] | SUI J H, LI J, HE J Q, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environmental Science, 2013, 6(10):2916. |
[24] | HU L P, ZHU T J, WANG Y G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Materials, 2014, 6(2):88. |
[25] |
YAN X, POUDEL B, MA Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Letters, 2010, 10(9):3373.
DOI PMID |
[26] | ZHANG L J, WANG J L, SUN Q, et al. Three-stage inter- orthorhombic evolution and high thermoelectric performance in Ag-doped nanolaminar SnSe polycrystals. Advanced Energy Materials, 2017, 7(19):1700573. |
[27] |
CHENG C, LI J B, TIAN Z, et al. Thermoelectric property of In2O3/InNbO4 composites. Journal of Inorganic Materials, 2022, 37(7):724.
DOI |
[28] | LU X, HOU J, ZHANG Q, et al. Effect of Mg content on thermoelectric property of Mg3(1+z)Sb2 compounds. Journal of Inorganic Materials, 2021, 36(8):835. |
[29] | SHEN D Y, CHENG R H, WANG W W, et al. Enhanced thermoelectric performance of p-type Bi2Si2Te6 enabled via synergistically optimizing carrier concentration and suppressing bipolar effect. Materials Today Physics, 2023 37: 101185. |
[30] | LUO Y B, MA Z, HAO S Q, et al. Thermoelectric performance of the 2D Bi2Si2Te6 semiconductor. Journal of the American Chemical Society, 2022, 144(3):1445. |
[31] | MADAR N, GIVON Y, MOGILYANSKY D, et al. High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. Journal of Applied Physics, 2016, 120(3):035102. |
[32] | LUO Y B, YANG J Y, LI G. Enhancement of the thermoelectric performance of polycrystalline In4Se2.5 by copper intercalation and bromine substitution. Advanced Energy Materials, 2014, 4(2):1300599. |
[33] | YELGEL O C, SRIVASTAVA G P. Thermoelectric properties of n-type Bi2(Te0.85Se0.15)3 single crystals doped with CuBr and SbI3. Physical Review B, 2012, 85(12):125207. |
[34] | SHUAI J, KIM H S, LAN Y C. Study on thermoelectric performance by Na doping in nanostructured Mg1-xNaxAg0.97Sb0.99. Nano Energy, 2015, 11(12):640. |
[35] | MATARE H F. Carrier transport at grain boundaries in semiconductors. Journal of Applied Physics, 1984, 56(10):2605. |
[36] | SETO J Y W. The electrical properties of polycrystalline silicon films. Journal of Applied Physics, 1975, 46(12):5247. |
[37] | PIKE G E, SEAGER C H. The DC voltage dependence of semiconductor grain-boundary resistance. Journal of Applied Physics, 1979, 50(5):3414. |
[38] | MAY A F, SNYDER G J. Materials, Preparation, and Characterization in Thermoelectrics. Abingdon: Taylor & Francis, 2012: K1-K18. |
[39] | SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Kapitza conductance and phonon scattering at grain boundaries by simulation. Journal of Applied Physics, 2004, 95(11):6082. |
[40] | POLLACK,GERALD L. Kapitza resistance. Reviews of Modern Physics, 1969, 41(1):48. |
[41] | NARDUCCI D, SELEZNEVA E, CEROFOLINI G, et al. Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors. Journal of Solid State Chemistry, 2012, 193: 19. |
[42] | LIN Y, WOOD M, IMASATO K, et al. Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets. Energy Environmental Science, 2020, 13(11):4114. |
[43] | ZHAO L D, ZHANG B P, LI J F, et al. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sciences, 2008, 10(5):651. |
[44] | SCHULTZ J M, MCHUGH J P, TILLER W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. Journal of Applied Physics, 1962, 33(8):2443. |
[45] | LI Q, CHEN S, LIU K K, et al. Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds. Acta Physica Sinica, 2023, 72(9):097101. |
[46] | TOBERER E S, ZEVALKINK A, CRISOSTO N, et al. The Zintl compound Ca5Al2Sb6 for low-cost thermoelectric power generation. Advanced Functional Materials, 2010, 20(24):4375. |
[47] | ZHOU Z F, ZHENG Y P, YANG Y Y, et al. Optimized weighted mobility induced high thermoelectric performance of ZnO-based multilayered thin films. Journal of the American Ceramic Society, 2022, 106(5):2911. |
[48] | SNYDER G J, SNYDER A H, WOOD M, et al. Weighted mobility. Advanced Materials, 2020, 32(25):2001537. |
[49] | GONG Y R, ZHANG S H, HOU Y X, et al. Enhanced density of states facilitates high thermoelectric performance in solution- grown Ge- and In-codoped SnSe nanoplates. ACS Nano, 2022, 17(1):801. |
[50] | XIAO Y, WANG D Y, ZHANG Y, et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. Journal of the American Chemical Society, 2020, 142(8):4051. |
[1] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
[2] | 陈浩, 樊文浩, 安德成, 陈少平. 能带优化和载流子调控改善SnTe的热电性能[J]. 无机材料学报, 2024, 39(3): 306-312. |
[3] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[4] | 孟雨婷, 王雪梅, 章淑娴, 陈志炜, 裴艳中. Bi2Te3基热电材料的单带和双带传输特性转变[J]. 无机材料学报, 2024, 39(11): 1283-1291. |
[5] | 苏浩健, 周敏, 李来风. 多元素掺杂优化SnTe的热电性能[J]. 无机材料学报, 2024, 39(10): 1159-1166. |
[6] | 肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806. |
[7] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[8] | 李建波, 田震, 蒋全伟, 于砺锋, 康慧君, 曹志强, 王同敏. 不同元素掺杂对CaTiO3微观结构及热电性能的影响[J]. 无机材料学报, 2023, 38(12): 1396-1404. |
[9] | 王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏. 熵调控抑制ZrNiSn基half-Heusler热电材料的晶格热导率[J]. 无机材料学报, 2022, 37(7): 717-723. |
[10] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[11] | 娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋. Ge掺杂MnTe材料的热电输运性能[J]. 无机材料学报, 2022, 37(2): 209-214. |
[12] | 金敏, 白旭东, 张如林, 周丽娜, 李荣斌. 区熔法制备金属硫化物Ag2S及其热电性能研究[J]. 无机材料学报, 2022, 37(1): 101-106. |
[13] | 张岑岑, 王雪, 彭良明. 基于分步式双重调控n型(PbTe)1-x-y(PbS)x(Sb2Se3)y体系的热电传输特性[J]. 无机材料学报, 2021, 36(9): 936-942. |
[14] | 杨青雨, 仇鹏飞, 史迅, 陈立东. 熵工程在热电材料中的应用[J]. 无机材料学报, 2021, 36(4): 347-354. |
[15] | 蔡剑锋, 王泓翔, 刘国强, 蒋俊. 热电材料中的高熵结构设计[J]. 无机材料学报, 2021, 36(4): 399-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||