[1] |
GEORGEE P, RAABE D, RITCHIER O. High-entropy alloys. Nature Reviews Materials, 2019,4(8):515-534.
|
[2] |
MIRACLED B, SENKOVO N. A critical review of high entropy alloys and related concepts. Acta Mater., 2017,122:448-511.
|
[3] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloying with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004,6(5):299-303.
|
[4] |
GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014,345(6201):1153-1158.
URL
PMID
|
[5] |
LI Z, PRADEEPK G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016,534(7606):306-307.
|
[6] |
YOUSSEF K M, ZADDACH A J, NIU C, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 2014,3(2):95-99.
|
[7] |
ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014,61:1-93.
|
[8] |
SHI Y Z, YANG B LIAW P. Corrosion-resistant high-entropy alloys: a review. Metals-Basel, 2017,7(92):43-1-18.
|
[9] |
SENKOV O N, WILKS G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010,18(9):1758-1765.
|
[10] |
HSU C Y, JUAN C C, WANG W R, et al. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high- entropy alloys. Materials Science and Engineering: A, 2011,528(10/11):3581-3588.
|
[11] |
OIKAWA K, ITO W, IMANO Y, et al. Effect of magnetic field on martensitic transition of Ni46Mn41In13 heusler alloy. Appl. Phys. Lett., 2006,88(12):122507-1-3.
|
[12] |
ZHANG Y, ZUO T, CHENG Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep., 2013,3:1455-1-7.
URL
PMID
|
[13] |
BÉRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 2016,10(4):328-333.
|
[14] |
SHAFEIE S, GUO S, HU Q, et al. High-entropy alloys as high- temperature thermoelectric materials. J. Appl. Phys., 2015,118(18):184905-1-10.
|
[15] |
WEI P C, LIAO C N, WU H J, et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Adv. Mater., 2020,32(12):1906457-1-10.
|
[16] |
TSAI M H. Three strategies for the design of advanced high- entropy alloys. Entropy, 2016,18(7):252-1-14.
|
[17] |
TSAI M H, YEH J W. High-entropy alloys: a critical review. Materials Research Letters, 2014,2(3):107-123.
|
[18] |
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008,321(12):1457-1461.
|
[19] |
SNYDER G J. Complex strucure thermoelectric meterial. Nat. Mater., 2008,7(2):105-114.
DOI
URL
PMID
|
[20] |
SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials. Angewandte Chemie International Edition, 2009,48(46):8616-8639.
URL
PMID
|
[21] |
ZHANG H, LEE G, FONSECA A F, et al. Isotope effect on the thermal conductivity of graphene. Journal of Nanomaterials, 2010,2010:537657-1-5.
|
[22] |
LIU R, XI L, LIU H, et al. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem. Commun., 2012,48(32):3818-3820.
|
[23] |
PLIRDPRING T, KUROSAKI K, KOSUGA A, et al. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Adv. Mater., 2012,24(27):3622-3626.
URL
PMID
|
[24] |
XI L, ZHANGY B, SHIX Y, et al. Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X=Se, S) from first principles. Phys. Rev. B, 2012,86(15):155201-155215.
|
[25] |
SKOUGE J, CAINJ D, MORELLID T. High thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4solid solution. Appl. Phys. Lett., 2011, 98(26):261911-1-3.
DOI
URL
|
[26] |
LIU R, CHEN H, ZHAO K, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv. Mater., 2017, 29(38):1702712-7-7.
|
[27] |
HU L, ZHANG Y, WU H, et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Adv. Energy Mater., 2018, 8(29):1802116-1-14.
|
[28] |
LIN S X, TAN X J, SHAO H Z, et al. Ultralow lattice thermal conductivity in SnTe by manipulating the electron-phonon coupling. The Journal of Physical Chemistry C, 2019,123(26):15996-16002.
DOI
URL
|
[29] |
TAN G, HAO S, HANUS R, et al. High thermoelectric performance in SnTe-AgSbTe2 alloys from lattice softening, giant phonon-vacancy scattering, and valence band convergence. ACS. Energy Lett., 2018,3(3):705-712.
|
[30] |
HARRISON W. Elementary Electronic Structure. London: World Scientific Publishing Company, 2004.
|