无机材料学报 ›› 2021, Vol. 36 ›› Issue (4): 347-354.DOI: 10.15541/jim20200417

所属专题: 能源材料论文精选(2021) 【虚拟专辑】热电材料(2020~2021) 【结构材料】高熵陶瓷 【能源环境】热电材料

• 综述 • 上一篇    下一篇

熵工程在热电材料中的应用

杨青雨1,2(), 仇鹏飞1,2, 史迅1,2(), 陈立东1,2   

  1. 1.中国科学院 上海硅酸盐研究所, 上海 200050
    2.中国科学院大学 材料科学与光电技术学院, 北京 100049
  • 收稿日期:2020-07-27 修回日期:2020-09-14 出版日期:2021-04-20 网络出版日期:2020-09-20
  • 通讯作者: 史 迅, 研究员. E-mail: xshi@mail.sic.ac.cn
  • 作者简介:杨青雨(1995-), 男, 博士研究生. E-mail: yangqingyu@student.sic.ac.cn
  • 基金资助:
    国家杰出青年科学基金(51625205)

Application of Entropy Engineering in Thermoelectrics

YANG Qingyu1,2(), QIU Pengfei1,2, SHI Xun1,2(), CHEN Lidong1,2   

  1. 1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-07-27 Revised:2020-09-14 Published:2021-04-20 Online:2020-09-20
  • Contact: SHI Xun, professor. E-mail: xshi@mail.sic.ac.cn
  • About author:YANG Qingyu(1995-), male, PhD candidate. E-mail: yangqingyu@student.sic.ac.cn
  • Supported by:
    National Science Foundation for Distinguished Young Scholars(51625205)

摘要:

作为高熵合金设计思想的延伸, 熵工程可从电子和声子输运两方面引导热电材料的性能优化, 在多种热电材料体系已经获得了成功应用。特别是, 熵具有内禀的类似基因特性, 可以作为热电材料的指征因子, 对多元热电材料实现快速筛选。本文首先揭示熵作为热电材料基因特性的内禀原因, 阐述构型熵增加导致材料晶体结构对称性增强、泽贝克系数提升、晶格热导率下降的物理机制; 然后着重介绍熵工程在类液态材料和IV-VI族半导体等典型热电材料体系中的应用, 总结熵工程提高材料热电性能的研究进展; 并介绍多元单相高熵热电材料的热力学稳定性预测方法; 最后指出了熵工程将来的研究重点。

关键词: 熵工程, 热电材料, 材料基因工程, 电声输运, 综述

Abstract:

As the extension of high-entropy alloy, entropy engineering has been already extensively used in thermoelectrics because it can guide the optimization of thermoelectric (TE) performance from the aspects of both electrical and thermal transports. Due to the inherent material gene-like feature, entropy can be used as a performance indicator to rapidly screen new multicomponent TE materials. In this review, we first reveal the reason why entropy can be used as the performance indicator of TE materials. The physical mechanisms of enhanced structure symmetry, improved Seebeck coefficient, and suppressed lattice thermal conductivity as a result of the increased configurational entropy are discussed. Then, the applications of entropy engineering in typical TE materials, such as liquid-like materials and IV-VI semiconductors, are outlined, and the approach to screen and identify candidate multicomponent TE materials with high configurational entropy is introduced. Finally, the future directions for entropy engineering are highlighted.

Key words: entropy engineering, thermoelectric material, materials genome engineering, electrical and thermal transports, review

中图分类号: