无机材料学报 ›› 2021, Vol. 36 ›› Issue (4): 347-354.DOI: 10.15541/jim20200417
所属专题: 能源材料论文精选(2021); 【虚拟专辑】热电材料(2020~2021); 【结构材料】高熵陶瓷; 【能源环境】热电材料
杨青雨1,2(), 仇鹏飞1,2, 史迅1,2(), 陈立东1,2
收稿日期:
2020-07-27
修回日期:
2020-09-14
出版日期:
2021-04-20
网络出版日期:
2020-09-20
通讯作者:
史 迅, 研究员. E-mail: xshi@mail.sic.ac.cn
作者简介:
杨青雨(1995-), 男, 博士研究生. E-mail: yangqingyu@student.sic.ac.cn
基金资助:
YANG Qingyu1,2(), QIU Pengfei1,2, SHI Xun1,2(), CHEN Lidong1,2
Received:
2020-07-27
Revised:
2020-09-14
Published:
2021-04-20
Online:
2020-09-20
Contact:
SHI Xun, professor. E-mail: xshi@mail.sic.ac.cn
About author:
YANG Qingyu(1995-), male, PhD candidate. E-mail: yangqingyu@student.sic.ac.cn
Supported by:
摘要:
作为高熵合金设计思想的延伸, 熵工程可从电子和声子输运两方面引导热电材料的性能优化, 在多种热电材料体系已经获得了成功应用。特别是, 熵具有内禀的类似基因特性, 可以作为热电材料的指征因子, 对多元热电材料实现快速筛选。本文首先揭示熵作为热电材料基因特性的内禀原因, 阐述构型熵增加导致材料晶体结构对称性增强、泽贝克系数提升、晶格热导率下降的物理机制; 然后着重介绍熵工程在类液态材料和IV-VI族半导体等典型热电材料体系中的应用, 总结熵工程提高材料热电性能的研究进展; 并介绍多元单相高熵热电材料的热力学稳定性预测方法; 最后指出了熵工程将来的研究重点。
中图分类号:
杨青雨, 仇鹏飞, 史迅, 陈立东. 熵工程在热电材料中的应用[J]. 无机材料学报, 2021, 36(4): 347-354.
YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics[J]. Journal of Inorganic Materials, 2021, 36(4): 347-354.
图2 Cu2(S/Se/Te)体系泽贝克系数与构型熵的关系[10]
Fig. 2 Room-temperature Seebeck coefficient as a function of configurational entropy in Cu2(S/Se/Te)-based multicomponent materials[10]
图3 代表性热电材料晶格热导率与构型熵的关系[10,39-40]
Fig. 3 Lattice thermal conductivity as a function of configurational entropy for typical TE materials[10,39-40] The red zone presents the minimum lattice thermal conductivity
图5 Cu2X (X=S, Te, Se)体系泽贝克系数与载流子浓度的关系[10]
Fig. 5 Carrier concentration dependence of room-temperature Seebeck coefficient in Cu2(S/Se/Te)-based TE materials with different crystal symmetry[10]
图6 (Sn, Ge, Pb, Mn)Te体系(a)泽贝克系数和(b)晶格热导率与构型熵的关系[39]
Fig. 6 (a) Seebeck coefficient and (b) lattice thermal conductivity as a function of configurational entropy in (Sn, Ge, Pb, Mn)Te-based materials[39]
图7 固溶吉布斯自由能与平均溶解度参数$\bar{\delta }$和材料组元数n的关系[10] (1 ? = 0.1 nm)
Fig. 7 Gibbs free energy as a function of the average solubility parameter$(\bar{\delta })$for given multicomponent TE materials with different number of components[10] (1 ? = 0.1 nm)
[1] | 陈立东, 刘睿恒, 史迅. 热电材料与器件, 北京: 科学出版社. 2018: 1-6. |
[2] | ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 2017,29(14):26. |
[3] | SLACK G A, ROWE D. CRC Handbook of Thermoelectrics. Boca Raton, FL: CRC press, 1995: 407-440. |
[4] | HICKS L, DRESSELHAUS. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 1993,47(24):16631. |
[5] |
SHI X, ZHANG W, CHEN L D, et al. Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. Physical Review Letters, 2005,95(18):185503.
URL PMID |
[6] | SHI X, KONG H, LI C P, et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Applied Physics Letters, 2008,92(18):182101. |
[7] |
SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of the American Chemical Society, 2011,133(20):7837-7846.
URL PMID |
[8] |
PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011,473(7345):66-69.
DOI URL PMID |
[9] |
LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics. Nature Materials, 2012,11(5):422-425.
DOI URL PMID |
[10] | LIU R, CHEN H, ZHAO K, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 2017,29(38):1702712. |
[11] | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303. |
[12] | SENKOV O N, MILLER J D, MIRACLE D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 2015,6(1):1-10. |
[13] | ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014,61:1-93. |
[14] | WEI P C, LIAO C N, WU H J, et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Advanced Materials, 2020,32(12):1906457. |
[15] | MIRACLE D B, MILLER J D, SENKOV O N, et al. Exploration and development of high entropy alloys for structural applications. Entropy, 2014,16(1):494-525. |
[16] |
ZHANG Y, ZUO T T, CHENG Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Scientific Reports, 2013,3:1455.
URL PMID |
[17] | LUCAS M S, BELYEA D, BAUER C, et al. Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys. Journal of Applied Physics, 2013,113(17):17A923. |
[18] | KOZELJ P, VRTNIK S, JELEN A, et al. Discovery of a superconducting high-entropy alloy. Physical Review Letters, 2014,113(10):5. |
[19] | KAO Y F, CHEN S K, SHEU J H, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy, 2010,35(17):9046-9059. |
[20] | BERARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 2016,10(4):328-333. |
[21] | BERARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016,4(24):9536-9541. |
[22] | SHAFEIE S, GUO S, HU Q, et al. High-entropy alloys as high-temperature thermoelectric materials. Journal of Applied Physics, 2015,118(18):184905. |
[23] | RA S. Thermodynamics of Solids. New York: John Wiley and Sons, 1972: 178. |
[24] | SONOMURA H. Internal strain energy in quaternary III-V compound alloys. Journal of Applied Physics, 1986,59(3):739-742. |
[25] | SLAUGHTER W, PETROLITO J. The linearized theory of elasticity. Applied Mechanics Reviews, 2002,55(5):B90. |
[26] |
GREAVES G N, GREER A, LAKES R S, et al. Poisson's ratio and modern materials. Nature Materials, 2011,10(11):823-837.
URL PMID |
[27] | YANG J, MEISNER G P, CHEN L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 2004,85(7):1140-1142. |
[28] | MEISNER G P, MORELLI D T, HU S, et al. Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members. Physical Review Letters, 1998,80(16):3551-3554. |
[29] |
PLIRDPRING T, KUROSAKI K, KOSUGA A, et al. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Advanced Materials, 2012,24(27):3622-3626.
URL PMID |
[30] | CHENG N, LIU R, BAI S, et al. Enhanced thermoelectric performance in Cd doped CuInTe2 compounds. Journal of Applied Physics, 2014,115(16):163705. |
[31] | QIN Y, QIU P, LIU R, et al. Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe2 compounds. Journal of Materials Chemistry A, 2016,4(4):1277-1289. |
[32] |
GASCOIN F, OTTENSMANN S, STARK D, et al. Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2. Advanced Functional Materials, 2005,15(11):1860-1864.
DOI URL |
[33] | MAO J, KIM H S, SHUAI J, et al. Thermoelectric properties of materials near the band crossing line in Mg2Sn-Mg2Ge-Mg2Si system. Acta Materialia, 2016,103:633-642. |
[34] |
LIU W, TAN X, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Physical Review Letters, 2012,108(16):166601.
URL PMID |
[35] | BANERJEE S, RAMAKRISHNAN T V, DASGUPTA C. Phenomenological Ginzburg-Landau-like theory for superconductivity in the cuprates. Physical Review B, 2011,83(2):024510. |
[36] | LIU W, LUKAS K C, MCENANEY K, et al. Studies on the Bi2Te3-Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy & Environmental Science, 2013,6(2):552-560. |
[37] |
YAMINI S A, WANG H, GIBBS Z M, et al. Chemical composition tuning in quaternary p-type Pb-chalcogenides—a promising strategy for enhanced thermoelectric performance. Physical Chemistry Chemical Physics, 2014,16(5):1835-1840.
DOI URL PMID |
[38] |
KORKOSZ R J, CHASAPIS T C, LO S H, et al. High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials. Journal of the American Chemical Society, 2014,136(8):3225-3237.
URL PMID |
[39] | HU L, ZHANG Y, WU H, et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Advanced Energy Materials, 2018,8(29):1802116. |
[40] | ZHAO S Y, CHEN R, LI J Q, et al. Synergistic effects on thermoelectric properties of Sn0.5Ge0.4875Te with Pb alloying. Journal of Alloys and Compounds, 2019,777:1334-1339. |
[41] | POSFAI M, BUSECK P R. Djurleite, digenite, and chalcocite: intergrowths and transformations. American Mineralogist, 1994,79(3/4):308-315. |
[42] | GULAY L, DASZKIEWICZ M, STROK O, et al. Crystal structure of Cu2Se. Chemistry of Metals and Alloys, 2011,4(3/4):200-205. |
[43] | PASHINKIN A, FEDOROV V. Phase equilibria in the Cu-Te system. Inorganic Materials, 2003,39(6):539-554. |
[44] |
HE Y, LU P, SHI X, et al. Ultrahigh thermoelectric performance in mosaic crystals. Advanced Materials, 2015,27(24):3639-3644.
URL PMID |
[45] | ZHAO K, QIU P, SONG Q, et al. Ultrahigh thermoelectric performance in Cu2-ySe0.5S0.5 liquid-like materials. Materials Today Physics, 2017,1:14-23. |
[46] | ZHAO K, ZHU C, QIU P, et al. High thermoelectric performance and low thermal conductivity in Cu2-yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy, 2017,42:43-50. |
[47] |
WELDERT K S, ZEIER W G, DAY T W, et al. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. Journal of the American Chemical Society, 2014,136(34):12035-12040.
DOI URL PMID |
[48] | CHEN R, QIU P, JIANG B, et al. Significantly optimized thermoelectric properties in high-symmetry cubic Cu7PSe6 compounds via entropy engineering. Journal of Materials Chemistry A, 2018,6(15):6493-6502. |
[49] | JIANG B, QIU P, CHEN H, et al. Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials. Materials Today Physics, 2018,5:20-28. |
[50] |
JIANG B, QIU P, CHEN H, et al. An argyrodite-type Ag9GaSe6 liquid-like material with ultralow thermal conductivity and high thermoelectric performance. Chemical Communications, 2017,53(85):11658-11661.
URL PMID |
[51] | PEI Y, LALONDE A, IWANAGA S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011,4(6):2085-2089. |
[52] | LI J, ZHANG X, CHEN Z, et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2018,2(5):976-987. |
[53] |
ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014,508(7496):373-377.
URL PMID |
[54] | FAN Z, WANG H, WU Y, et al. Thermoelectric performance of PbSnTeSe high-entropy alloys. Materials Research Letters, 2017,5(3):187-194. |
[55] |
WU Y, NAN P, CHEN Z, et al. Manipulation of band degeneracy and lattice strain for extraordinary PbTe thermoelectrics. Research, 2020,2020:8151059.
DOI URL PMID |
[56] | RAOUX S, MUñOZ B, CHENG H Y, et al. Phase transitions in Ge-Te phase change materials studied by time-resolved X-ray diffraction. Applied Physics Letters, 2009,95(14):143118. |
[57] |
ALPTEKIN S. Structural phase transition of SnSe under uniaxial stress and hydrostatic pressure: an ab initio study. Journal of Molecular Modeling, 2011,17(11):2989-2994.
DOI URL PMID |
[58] | MUIR J A, BEATO V. Phase transformations in the system GeSe- GeTe. Journal of the Less Common Metals, 1973,33(3):333-340. |
[59] | WIEDEMEIER H, SIEMERS P. The thermal expansion and high temperature transformation of GeSe. Zeitschrift für Anorganische und Allgemeine Chemie, 1975,411(1):90-96. |
[60] | SIST M, GATTI C, NØRBY P, et al. High-temperature crystal structure and chemical bonding in thermoelectric germanium selenide (GeSe). Chemistry-A European Journal, 2017,23(28):6888-6895. |
[61] | HUANG Z, MILLER S A, GE B, et al. High thermoelectric performance of new rhombohedral phase of GeSe stabilized through alloying with AgSbSe2. Angewandte Chemie International Edition, 2017,129(45):14301-14306. |
[62] |
QIU Y, JIN Y, WANG D, et al. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. Journal of Materials Chemistry A, 2019,7(46):26393-26401.
DOI URL |
[63] |
ZHANG R Z, GUCCI F, ZHU H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic Chemistry, 2018,57(20):13027-13033.
DOI URL PMID |
[64] | FAN Z, WANG H, WU Y, et al. Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Advances, 2016,6(57):52164-52170. |
[65] |
RAPHEL A, VIVEKANANDHAN P, KUMARAN S. High entropy phenomena induced low thermal conductivity in BiSbTe1.5Se1.5 thermoelectric alloy through mechanical alloying and spark plasma sintering. Materials Letters, 2020,269:127672.
DOI URL |
[66] | YAN J, LIU F, MA G, et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scripta Materialia, 2018,157:129-134. |
[67] | SAKURADA S, SHUTOH N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Applied Physics Letters, 2005,86(8):082105. |
[68] | VOLYKHOV A, YASHINA L, TAMM M, et al. Phase equilibria in ternary reciprocal systems based on IV-VI compounds. Inorganic Materials 2009,45(9):968-974. |
[69] |
WANG Y Y, ROGADO N S, CAVA R J, et al. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature, 2003,423(6938):425-428.
DOI URL PMID |
[70] | EMIN D. Enhanced Seebeck coefficient from carrier-induced vibrational softening. Physical Review B, 1999,59(9):6205-6210. |
[71] |
HAN C G, QIAN X, LI Q K, et al. Giant thermopower of ionic gelatin near room temperature. Science, 2020,368(6495):1091-1098.
URL PMID |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[7] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[8] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[9] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[10] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[11] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[15] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||