无机材料学报 ›› 2024, Vol. 39 ›› Issue (2): 171-178.DOI: 10.15541/jim20230323 CSTR: 32189.14.10.15541/jim20230323
所属专题: 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
收稿日期:
2023-07-17
修回日期:
2023-08-13
出版日期:
2023-08-31
网络出版日期:
2023-08-31
通讯作者:
Husam N ALSHAREEF, professor. E-mail: husam.alshareef@kaust.edu.sa作者简介:
徐向明(1989-), 男, 博士. E-mail: xiangming.xu@kaust.edu.sa
XU Xiangming(), Husam N ALSHAREEF(
)
Received:
2023-07-17
Revised:
2023-08-13
Published:
2023-08-31
Online:
2023-08-31
Contact:
Husam N ALSHAREEF, professor. E-mail: husam.alshareef@kaust.edu.saAbout author:
XU Xiangming (1989-), male, PhD. E-mail: xiangming.xu@kaust.edu.sa
摘要:
超薄的过渡金属碳氮化合物MXenes, 作为一大类新兴二维(2D)材料, 是当前材料研究热点方向之一。自2D材料发现至今已有近20年, 以石墨烯、过渡金属硫族化合物、黑磷等为代表的2D材料在微纳电子领域经历了相对广泛且深入的研究, MXenes自2011年诞生以来在微纳电子领域的研究也方兴未艾。MXenes拥有丰富的元素结构组成和独特的物理化学特性(表面亲水性、功函可调、官能团可调、电和离子快速传输特性、表面离子激元、光热电、电磁吸收等), 使其在微纳电子领域具有潜在的应用前景。Alshareef课题组近几年致力于将MXene引入到微纳电子领域, 并在2019年用MXetronics来定义MXene电子学这一新兴的学术领域。本文简要总结和评价了该领域的代表性进展, 梳理了包括微电子级的合成、加工、物性探索和器件应用等方面面临的挑战, 最后指出一些关键的研究方向和尚未探索的细分领域。
中图分类号:
徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178.
XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics[J]. Journal of Inorganic Materials, 2024, 39(2): 171-178.
图1 MXene电子学(MXetronics)概图[2]
Fig. 1 Schematic diagram of MXetronics[2] From properties, synthesis, and processing of MXenes to their applications in macro & micro & nano electronics
图2 MXenes的结构和物性
Fig. 2 Structure and physical properties of MXenes (a) Lattice structure of representative MXene Ti3C2Tx showing fast electron and ion transport; (b) Breakdown current of Ti3C2Tx compared with the other metals and semiconductors[4]; (c) Semiconductive MXene Sc2CTx with different surface groups (-F, -OH, =O)[5]; (d) Low-temperature properties of Nb2CTx MXene with different surface groups, Nb2CS2 and Nb2CSe2 showing the superconductive transition[6]; (e) Calculated work function of various MXenes with different surface groups[7]; (f) EELS mappings showing MXene with different light response phenomena, which is surface plasmonic effect, including inter-band transition mode, transversal and longitudinal surface plasmons modes[8]
图4 MXene常规打印和高精度图案化工艺
Fig. 4 Normal printing and high-resolution processing of MXenes (a) Various printing technologies to be used for MXene low-resolution patterning, usually above hundreds micrometer scale[16]; (b) MXene thin film processing and high-resolution patterning techniques[1]
图5 基于MXene的微纳电子器件和集成
Fig. 5 MXene-based micro or nanoelectronic devices and their integration (a) Ti3C2Tx MXene as source/drain/gate contact in 2D nano-electronics[28]; (b) Ti3C2Tx MXene-gate for high-performance GaN high-electron-mobility transistors (HEMTs)[24]; (c) HEMTs MXene-derived MOF as the patternable ionic gate in MoS2 electron-double layer transistor[21]; (d) Partially oxidized Ti3C2Tx as floating gat in flash memory transistor[29]; (e) Ti3C2Tx MXene as the channel in electron-double layer transistor for synaptic devices[30]; (f) Ti3C2Tx MXene-Si Schottky diode array as image sensor[31]
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666.
DOI PMID |
[2] |
XU X, GUO T, LANZA M, et al. Status and prospects of MXene-based nanoelectronic devices. Matter, 2023, 6(3): 800.
DOI URL |
[3] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248.
DOI URL |
[4] |
WANG H, YAO Z, ACAUAN L, et al. Toward MXene interconnects. Matter, 2021, 4(5): 1447.
DOI URL |
[5] |
KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013, 23(17): 2185.
DOI URL |
[6] |
KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369(6506): 979.
DOI PMID |
[7] |
LIU Y, XIAO H, GODDARD W A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. Journal of the American Chemical Society, 2016, 138(49): 15853.
PMID |
[8] |
EL-DEMELLAWI J K, LOPATIN S, YIN J, et al. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano, 2018, 12(8): 8485.
DOI URL |
[9] |
LIPATOV A, GOAD A, LOES M J, et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes. Matter, 2021, 4(4): 1413.
DOI URL |
[10] |
LIPATOV A, LOES M J, VOROBEVA N S, et al. High breakdown current density in monolayer Nb4C3Tx MXene. ACS Materials Letters, 2021, 3(8): 1088.
DOI URL |
[11] | HU C, WEI Z, LI L, et al. Strategy toward semiconducting Ti3C2Tx- MXene: phenylsulfonic acid groups modified Ti3C2Tx as photosensitive material for flexible visual sensory-neuromorphic system. Advanced Functional Materials, DOI: 10.1002/adfm.202302188. |
[12] |
HU C, DU Z, WEI Z, et al. Functionalized Ti3C2Tx MXene with layer-dependent band gap for flexible NIR photodetectors. Applied Physics Reviews, 2023, 10: 021402.
DOI URL |
[13] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020, 19(8): 894.
DOI PMID |
[14] |
WANG D, ZHOU C, FILATOV A S, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science, 2023, 379(6638): 1242.
DOI PMID |
[15] |
WU H, ALMALKI M, XU X, et al. MXene-derived metal-organic frameworks. Journal of the American Chemical Society, 2019, 141(51): 20037.
DOI URL |
[16] |
ZHANG Y Z, WANG Y, JIANG Q, et al. MXene printing and patterned coating for device applications. Advanced Materials, 2020, 32(21): 1908486.
DOI URL |
[17] |
GUO T, XU X, LIU C, et al. Large-area metal-semiconductor heterojunctions realized via MXene-induced two-dimensional surface polarization. ACS Nano, 2023, 17(9): 8324.
DOI URL |
[18] |
WANG Z, KIM H, ALSHAREEF H N. Oxide thin-film electronics using all-MXene electrical contacts. Advanced Materials, 2018, 30(15): 1706656.
DOI URL |
[19] |
KIM H, WANG Z, ALSHAREEF H N. MXetronics: electronic and photonic applications of MXenes. Nano Energy, 2019, 60: 179.
DOI |
[20] |
KIM H, ALSHAREEF H N. MXetronics: MXene-enabled electronic and photonic devices. ACS Materials Letters, 2019, 2(1): 55.
DOI URL |
[21] |
XU X, WU H, HE X, et al. Iontronics using V2CTx MXene- derived metal-organic framework solid electrolytes. ACS Nano, 2020, 14(8): 9840.
DOI URL |
[22] |
KIM H, NUGRAHA M I, GUAN X, et al. All-solution-processed quantum dot electrical double-layer transistors enhanced by surface charges of Ti3C2Tx MXene contacts. ACS Nano, 2021, 15(3): 5221.
DOI URL |
[23] |
XU X, GUO T, HOTA M K, et al. High-yield Ti3C2Tx MXene-MoS2 integrated circuits. Advanced Materials, 2022, 34(48): 2107370.
DOI URL |
[24] |
WANG C, XU X, TYAGI S, et al. Ti3C2Tx MXene van der Waals gate contact for GaN high electron mobility transistors. Advanced Materials, 35: 2211738.
DOI URL |
[25] | XU X, WANG Z, LOPATIN S, et al. Wafer-scale quasi-single crystalline MoS2 realized by epitaxial phase conversion. 2D Materials, 2019, 6(1): 015030. |
[26] |
XU X, DAS G, HE X, et al. High-performance monolayer MoS2 films at the wafer scale by two-step growth. Advanced Functional Materials, 2019, 29(32): 1901070.
DOI URL |
[27] |
XU X, ZHANG C, HOTA M K, et al. Enhanced quality of wafer-scale MoS2 films by a capping layer annealing process. Advanced Functional Materials, 2020, 30(11): 1908040.
DOI URL |
[28] |
XU X, GUO T, KIM H, et al. Growth of 2D Materials at the wafer scale. Advanced Materials, 2022, 34(14): 2108258.
DOI URL |
[29] |
LYU B, CHOI Y, JING H, et al. 2D MXene-TiO2 core-shell nanosheets as a data-storage medium in memory devices. Advanced Materials, 2020, 32(17): 1907633.
DOI URL |
[30] |
MELIANAS A, KANG M A, VAHIDMOHAMMADI A, et al. High-speed ionic synaptic memory based on 2D titanium carbide MXene. Advanced Functional Materials, 2022, 32(12): 2109970.
DOI URL |
[31] |
LI B, ZHU Q B, CUI C, et al. Patterning of wafer-scale MXene films for high-performance image sensor arrays. Advanced Materials, 2022, 34(17): 2201298.
DOI URL |
[1] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[2] | 赵志翰, 郭鹏, 魏菁, 崔丽, 刘山泽, 张文龙, 陈仁德, 汪爱英. Ti-DLC薄膜压阻性能及载流子输运行为研究[J]. 无机材料学报, 2024, 39(8): 879-886. |
[3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[4] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[5] | 杨志亮, 杨鏊, 刘鹏, 陈良贤, 安康, 魏俊俊, 刘金龙, 吴立枢, 李成明. 热管理用3英寸硅衬底金刚石薄膜的制备[J]. 无机材料学报, 2024, 39(3): 283-290. |
[6] | 刘松, 张发强, 罗进, 刘志甫. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3铁电薄膜制备及储能特性[J]. 无机材料学报, 2024, 39(3): 291-298. |
[7] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[8] | 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194. |
[9] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. |
[10] | 尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J]. 无机材料学报, 2024, 39(2): 179-185. |
[11] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[12] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. |
[13] | 陈泽, 支春义. MXene在锌离子电池中的应用: 研究进展与展望[J]. 无机材料学报, 2024, 39(2): 204-214. |
[14] | 丁浩明, 陈科, 李勉, 李友兵, 柴之芳, 黄庆. 无机材料的“化学剪刀”结构编辑策略[J]. 无机材料学报, 2024, 39(2): 115-128. |
[15] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||