[1] ZORKO A, JEGLIČ P, POTOČNIK A,et al. Unconventional magnetism in a nitrogen-containing analog of cupric oxide. Physical Review Letters, 2011, 107(4): 047208. [2] DUVERNAY F, CHIAVASSA T, BORGET F,et al. Experimental study of water-ice catalyzed thermal isomerization of cyanamide into carbodiimide: implication for prebiotic chemistry. Journal of the American Chemical Society, 2004, 126(25): 7772-7773. [3] Dehlinger U.XVII. Über die Raumgruppe von (CN2H2)2 und die Kristallstruktur von CaCN2.Zeitschrift für Kristallographie- Crystalline Materials, 1927, 65: 286-290. [4] BERGER U, SCHNICK W.Syntheses, crystal structures, and vibrational spectroscopic properties of MgCN2, SrCN2, and BaCN2.Journal of Alloys and Compounds, 1994, 206(2): 179-184. [5] DOWN M G, HALEY M J, HUBBERSTEY P, et al. Synthesis of the dilithium salt of cyanamide in liquid lithium; X-ray crystal structure of Li2NCN. Chemical Communications, 1978(2): 52-53. [6] LIU X, DECKER A, SCHMITZ D,et al. crystal structure refinement of lead cyanamide and the stiffness of the cyanamide anion. Zeitschrift für Anorganische und Allgemeine Chemie, 2000, 626(1): 103-105. [7] DRONSKOWSKI R.In2.24(NCN)3 and NaIn(NCN)2: synthesis and crystal structures of new main group metal cyanamides.Zeitschrift für Naturforschung B, 1995, 50(8): 1245-1251. [8] BECKER M, NUSS J, JANSEN M.Crystal structure and spectroscopic data of silver cyanamide.Zeitschrift für Naturforschung B, 2000, 55(5): 383-385. [9] JIA B, SUN D, ZHAO W,et al. Metal cyanamides: open- framework structure and energy conversion/storage applications. Journal of Energy Chemistry, 2021, 61: 347-367. [10] WICKLEDER C.Thiocyanates as novel host lattices for emitting rare earth ions: luminescence of Sr(SCN)2:Eu2+.Chemistry of Materials, 2005, 17(5): 1228-1233. [11] KRINGS M, MONTANA G, DRONSKOWSKI R,et al. α-SrNCN:Eu2+-a novel efficient orange-emitting phosphor. Chemistry of Materials, 2011, 23(7): 1694-1699. [12] ZHAO W, LIU Y, LIU J,et al. Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation. Journal of Materials Chemistry A, 2013, 1(27): 7942-7948. [13] RESSNIG D, SHALOM M, PATSCHEIDER J,et al. Photochemical and electrocatalytic water oxidation activity of cobalt carbodiimide. Journal of Materials Chemistry A, 2015, 3(9): 5072-5082. [14] JIA B, ZHAO W, FAN L,et al. Silver cyanamide nanoparticles decorated ultrathin graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis. Catalysis Science & Technology, 2018, 8(5): 1447-1453. [15] SOUGRATI M T, ARAYAMPARAMBIL J J, LIU X,et al. Carbodiimides as energy materials: which directions for a reasonable future? Dalton Transactions, 2018, 47(32): 10827-10832. [16] LIU C, ZHANG C, FU H,et al. Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors. Advanced Energy Materials, 2017, 7(1): 1601127. [17] LI Y, CAO C, ZHANG Q,et al. Nanorod bundle-like silver cyanamide nanocrystals for the high-efficiency photocatalytic degradation of tetracycline. RSC Advances, 2021, 11(17): 10235-10242. [18] EGUIA-BARRIO A, CASTILLO-MARTINEZ E, LIU X,et al. Carbodiimides: new materials applied as anode electrodes for sodium and lithium ion batteries. Journal of Materials Chemistry A, 2016, 4(5): 1608-1611. [19] SOUGRATI M T, DARWICHE A, LIU X,et al. Transition-metal carbodiimides as molecular negative electrode materials for lithium- and sodium-ion batteries with excellent cycling properties. Angewandte Chemie International Edition, 2016, 55(16): 5090-5095. [20] KROTT M, HOUBEN A, MÜLLER P,et al. Determination of the magnetic structure of manganese carbodiimide with diffraction experiments using polarized neutrons. Physical Review B, 2009, 80(2): 024117. [21] BECKER M, JANSEN M.Zinc cyanamide, ZnCN2.Acta Crystallographica Section C, 2001, 57(4): 347-348. [22] LIU Q, LIU Y, DAI G, et al. Size-controllable synthesis of hierarchical copper carbodiimide microcrystals and their pronounced photoelectric response under visible light.Applied Surface Science 2015, 357: 745-749. [23] LIU X, MÜLLER P, KROLL P,et al. Synthesis, structure determination, and quantum-chemical characterization of an alternate HgNCN polymorph. Inorganic Chemistry, 2002, 41(16): 4259-4265. [24] LÖBER M, DOLABDJIAN K, STRÖBELE M,et al. Synthesis, structure, and electronic properties of SnCN2 and Sn4Cl2(CN2)3. Inorganic Chemistry, 2019, 58(12): 7845-7851. [25] KUBUS M, HEINICKE R, STRÖBELE M,et al. Synthesis of new structurally related cyanamide compounds LiM(CN2)2 where M is Al3+, In3+ or Yb3+. Materials Research Bulletin, 2015, 62: 37-41. [26] DOLABDJIAN K, CASTRO C, MEYER H J.Layered carbodiimides A2M(CN2)3 with tetravalent cations M=Sn, Zr, and Hf.European Journal of Inorganic Chemistry, 2018(14): 1624-1630. [27] CORKETT A J, KONZE P M, DRONSKOWSKI R.The ternary post-transition metal carbodiimide SrZn(NCN)2.Zeitschrift für Anorganische und Allgemeine Chemie, 2017, 643(21): 1456-1461. [28] CORKETT A J, KONZE P M, DRONSKOWSKI R.Synthesis, crystal structure, and chemical-bonding analysis of BaZn(NCN)2.Inorganics, 2018, 6: 1-10. [29] CORKETT A J, CHEN Z, BOGDANOVSKI D,et al. Band gap tuning in bismuth oxide carbodiimide Bi2O2NCN. Inorganic Chemistry, 2019, 58(9): 6467-6473. [30] DOLABDJIAN K, GÖRNE A L, DRONSKOWSKI R,et al. Tin(II) oxide carbodiimide and its relationship to SnO. Dalton Transactions, 2018, 47(38): 13378-13383. [31] HASHIMOTO Y, TAKAHASHI M, KIKKAWA S,et al. Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2(Ln=Ce, Pr, Nd, Sm, Eu, Gd). Journal of Solid State Chemistry, 1996, 125(1): 37-42. [32] LI M, YUAN W, WANG J,et al. Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2(Ln=Dy, Ho, Er, Tm, Yb). Powder Diffraction, 2012, 22(1): 59-63. [33] LI Z A, CHEN L X, CAI J R.First-principles study on electronic structure and half-metallic properties of CoNCN and NiNCN.Communications in Theoretical Physics, 2009, 52(4): 707-709. [34] LIU X, KROTT M, MÜLLER P,et al. Synthesis, crystal structure, and properties of MnNCN, the first carbodiimide of a magnetic transition metal. Inorganic Chemistry, 2005, 44(9): 3001-3003. [35] TANG X, XIANG H, LIU X,et al. A ferromagnetic carbodiimide: Cr2(NCN)3. Angewandte Chemie International Edition, 2010, 49(28): 4738-4742. [36] JIA B, SUN D, ZHAO W,et al. Controllable conversion of CdNCN nanoparticles into various chalcogenide nanostructures for photo-driven applications. Chemistry-A European Journal, 2020, 26(35): 7955-7960. [37] SRINIVASAN R, GLASER J, TRAGL S,et al. LnCl(CN2) with Ln=La, Ce, and Pr: synthesis and structure of a new lanthanide chloride cyanamide related to the PbFCl-type structure. Zeitschrift für Anorganische und Allgemeine Chemie, 2005, 631(2/3): 479-483. [38] NEUKIRCH M, TRAGL S, MEYER H J.Syntheses and structural properties of rare earth carbodiimides.Inorganic Chemistry, 2006, 45(20): 8188-8193. [39] QIAO X, MA Z, LUO D,et al. Metathetic synthesis of lead cyanamide as a p-type semiconductor. Dalton Transactions, 2020, 49(40): 14061-14067. [40] THOMAS A, FISCHER, A, GOETTMANN F,et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008, 18(41): 4893-4908. [41] YAN X, YE Z, NING G,et al. Molten salt pyrolysis synthesis of magnetic FeNCN nanorods and their visible-light-driven photocatalytic properties. Applied Surface Science, 2020, 506: 145010. [42] KROTT M, LIU X, MÜLLER P,et al. Synthesis and structure determination of Co(HNCN)2 and Ni(HNCN)2. Journal of Solid State Chemistry, 2007, 180(1): 307-312. [43] KROTT M, LIU X, FOKWA B P T,et al. Synthesis, crystal structure determination and magnetic properties of two new transition-metal carbodiimides: CoNCN and NiNCN. Inorganic Chemistry, 2007, 46(6): 2204-2207. [44] LIU X, STORK L, SPELDRICH M,et al. FeNCN and Fe(NCNH)2: synthesis, structure, and magnetic properties of a nitrogen-based pseudo-oxide and -hydroxide of divalent iron. Chemistry-A European Journal, 2009, 15(7): 1558-1561. [45] LIU X, MÜLLER P, DRONSKOWSKI R. Synthesis and crystal structure of ammine copper(I) cyanamide, Cu4(NCN)2NH3.Zeitschrift für Anorganische und Allgemeine Chemie, 2005, 631(6/7): 1071-1074. [46] STORK L, LIU X, FOKWA B P T,et al. Crystal structure determination of thallium carbodiimide, Tl2NCN. Zeitschrift für Anorganische und Allgemeine Chemie, 2007, 633(9): 1339-1342. [47] JIA B, ZHAO W, SUN D,et al. Robust anion exchange realized in crystalline metal cyanamide nanoparticles. Chemistry of Materials, 2019, 31(22): 9532-9539. [48] ZHAO W, PAN J, HUANG F.Nonaqueous synthesis of metal cyanamide semiconductor nanocrystals for photocatalytic water oxidation.Chemical Communications, 2018, 54(13): 1575-1578. [49] KOZIEJ D, KRUMEICH F, NESPER R,et al. Nonaqueous liquid-phase synthesis of nanocrystalline metal carbodiimides. A proof of concept for copper and manganese carbodiimides. Journal of Materials Chemistry, 2009, 19(29): 5122-5124. [50] EGUIA-BARRIO A, CASTILLO-MARTÍNEZ E, KLEIN F,et al. Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries. Journal of Power Sources, 2017, 367: 130-137. [51] ARAYAMPARAMBIL J J, MANN M, FRAISSE B,et al. Cobalt carbodiimide as negative electrode for Li-ion batteries: electrochemical mechanism and performance. ChemElectroChem, 2019, 6(19): 5101-5108. [52] ARAYAMPARAMBIL J J, MANN M, LIU X,et al. Electrochemical evaluation of Pb, Ag, and Zn cyanamides/carbodiimides. ACS Omega, 2019, 4(2): 4339-4347. [53] ARAYAMPARAMBIL J J, CHEN K, IADECOLA A,et al. Reversible high capacity and reaction mechanism of Cr2(NCN)3 negative electrodes for Li-ion batteries. Energy Technology, 2020, 8(3): 1901260. [54] BRAUN C, MEREACRE L, HUA W,et al. SnCN2: a carbodiimide with an innovative approach for energy storage systems and phosphors in modern LED technology. ChemElectroChem, 2020, 7(22): 4550-4561. [55] CHEN K, FEHSE M, LAURITA A,et al. Quantum-chemical study of the FeNCN conversion-reaction mechanism in lithium- and sodium-ion batteries. Angewandte Chemie International Edition, 2020, 59(9): 3718-3723. [56] GUO P, CAO L, WANG R,et al. In situ construction of “anchor-like” structures in FeNCN for long cyclic life in sodium- ion batteries. Advanced Functional Materials, 2020, 30(17): 2000208. [57] LI T, ZHAO W, BI H,et al. Tubular graphene-supported nanoparticulate manganese carbodiimide as a free-standing high-energy and high-rate anode for lithium ion batteries. Journal of Power Sources, 2020, 467: 228252. [58] HE W, LI H, LONG B,et al. One-step synthesis of ZnNCN nanoparticles with adjustable composition for an advanced anode in lithium ion battery. ACS Applied Energy Materials, 2021, 4(5): 4290-4296. [59] CHEN K, LUO D, DRONSKOWSKI R.Exploring the possible anionic redox mechanism in Li-rich transition-metal carbodiimides.Journal of Physical Chemistry C, 2021, 125(16): 8479-8487. [60] LI J, WANG R, GUO P,et al. Realizing fast charge diffusion in oriented iron carbodiimide structure for high-rate sodium-ion storage performance. ACS Nano, 2021, 15(4): 6410-6419. [61] LÜ Z, DONG W, JIA B,et al. Flexible yet robust framework of tin(II) oxide carbodiimide for reversible lithium storage. Chemistry-A European Journal, 2021, 27(8): 2717-2723. [62] ZHAO S, SEWELL C D, LIU R,et al. SnO2 as advanced anode of alkali-ion batteries: inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility. Advanced Energy Materials, 2020, 10(6): 1902657. [63] SHEN J, CHEN X, WANG P,et al. Electrochemical performance of zinc carbodiimides based porous nanocomposites as supercapacitors. Applied Surface Science, 2021, 541: 148355. [64] YUAN M, ZHANG S, LIN L,et al. Manganese carbodiimide nanoparticles modified with N-doping carbon: a bifunctional cathode electrocatalyst for aprotic Li-O2 battery. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17464-17473. |