无机材料学报 ›› 2022, Vol. 37 ›› Issue (2): 152-162.DOI: 10.15541/jim20210183 CSTR: 32189.14.10.15541/jim20210183
所属专题: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409)
李高然, 李红阳, 曾海波
收稿日期:
2021-03-23
修回日期:
2021-05-07
出版日期:
2022-02-20
网络出版日期:
2021-05-25
作者简介:
李高然(1989-), 男, 教授. E-mail: gaoranli@njust.edu.cn
基金资助:
LI Gaoran, LI Hongyang, ZENG Haibo
Received:
2021-03-23
Revised:
2021-05-07
Published:
2022-02-20
Online:
2021-05-25
About author:
LI Gaoran (1989-), male, professor. E-mail: gaoranli@njust.edu.cn
Supported by:
摘要: 锂硫电池因其高能量密度和低成本等优势成为新一代电化学储能技术的重要发展方向。然而, 其较低的转换反应动力学和可逆性导致电池的实际容量、库仑效率和循环稳定性等仍难以满足实用化发展需求。对此, 合理设计和开发具有导电、吸附、催化特性的功能材料是稳定和促进硫电化学反应的关键途径。得益于硼独特的原子和电子结构, 硼基材料具有丰富且可调的物理、化学和电化学性质, 近年来在锂硫电池的研究中受到了广泛关注。本文综述了近期硼基材料, 包括硼烯、硼原子掺杂碳、金属硼化物和非金属硼化物在锂硫电池中的研究进展, 总结了存在的问题并展望了未来的发展方向。
中图分类号:
李高然, 李红阳, 曾海波. 硼基材料在锂硫电池中的研究进展[J]. 无机材料学报, 2022, 37(2): 152-162.
LI Gaoran, LI Hongyang, ZENG Haibo. Recent Progress of Boron-based Materials in Lithium-sulfur Battery[J]. Journal of Inorganic Materials, 2022, 37(2): 152-162.
[1] DUNN B, KAMATH H, TARASCON J M.Electrical energy storage for the grid: a battery of choices.Science, 2011, 334(6058): 928-935. [2] ARICO A S, BRUCE P, SCROSATI B, [3] LIANG Y R, ZHAO C Z, YUAN H, [4] GOODENOUGH J B, PARK K S.The Li-ion rechargeable battery: a perspective.Journal of the American Chemical Society, 2013, 135(4): 1167-1176. [5] TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries.Nature, 2011, 414: 171-179. [6] JIN G Y, HE H C, WU J, [7] FANG R, ZHAO S Y, SUN Z H, [8] HU J J, LI G R, GAO X P.Current status, problems and challenges in lithium-sulfur batteries.Journal of Inorganic Materials, 2013, 28(11): 1181-1186. [9] LI G R, WANG S, ZHANG Y N, [10] PENG H J, HUANG J Q, ZHANG Q.A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.Chemical Society Reviews, 2017, 46(17): 5237-5288. [11] JANA M, XU R, CHENG X B, [12] HE J R, MANTHIRAM A.A review on the status and challenges of electrocatalysts in lithium-sulfur batteries.Energy Storage Materials, 2019, 20: 55-70. [13] SEH Z W, SUN Y M, ZHANG Q F, [14] JI X L, EVERS S, BLACK R, [15] ZHANG Z, KONG L L, LIU S, [16] XU W C, PAN X X, MENG X, [17] LIU Y T, LIU S, LI G R, [18] CHEN H H, XIAO Y W, CHEN C, [19] YOO J, CHO S J, JUNG G Y, [20] HU Y, LIU C.Introduction of 1,2-migration for organoboron compounds.University Chemistry, 2019, 34(12): 39-44. [21] SOREN K M, SUNING W.Boron-based stimuli responsive materials.Chemical Society Reviews, 2019, 48(13): 3537-3549. [22] HUANG Z G, WANG S N, DEWHURST R D, [23] ZHU Y H, GAO S M, HOSMANE N S.Boron-enriched advanced energy materials.Inorganica Chimica Acta, 2017, 471: 577-586. [24] KHAN K, TAREEN A K, ASLAM M, [25] RAO D W, LIU X J, YANG H, [26] JIANG H R, SHYY W, LIU M, [27] ZHANG C Y, HE Q, CHU W, [28] ZHANG L, LIANG P, SHU H B, [29] GRIXTI S, MUKHERJEE S, SINGH C V.Two-dimensional boron as an impressive lithium-sulphur battery cathode material.Energy Storage Materials, 2018, 13: 80-87. [30] MANNIX A J, ZHOU X F, KIRALY B, [31] FENG B J, ZHANG J, ZHONG Q, [32] PARAKNOWITSCH J P, THOMAS A.Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications.Energy & Environmental Science, 2013, 6(10): 2839-2855. [33] WANG H B, MAIYALAGAN T, WANG X.Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications.ACS Catalysis, 2012, 2(5): 781-794. [34] XIE Y, MENG Z, CAI T W, [35] SHI P C, WANG Y, LIANG X, [36] YANG L J, JIANG S J, ZHAO Y, [37] AI W, LI J W, DU Z Z, [38] YANG C P, YIN Y X, YE H, [39] XU C X, ZHOU H H, FU C P, [40] HAN P, MANTHIRAM A.Boron- and nitrogen-doped reduced graphene oxide coated separators for high-performance Li-S batteries.Journal of Power Sources, 2017, 369: 87-94. [41] HOU T Z, CHEN X, PENG H J, [42] XIONG D G, ZHANG Z, HUANG X Y, [43] YUAN S Y, BAO J L, WANG L N, [44] CHEN L, FENG J R, ZHOU H H, [45] JIN C B, ZHANG W K, ZHUANG Z Z, [46] ULLAH S, DENIS P A, SATO F.Unusual enhancement of the adsorption energies of sodium and potassium in sulfur-nitrogen and silicon-boron codoped graphene.ACS Omega, 2018, 3(11): 15821-15828. [47] ZHANG Z, XIONG D G, SHAO A H, [48] WANG P, KUMAR R, SANKARAN E M, [49] HE G J, LING M, HAN X Y, [50] WANG C C, AKBAR S A, CHEN W, [51] XIAO Z B, YANG Z, ZHANG L J, [52] WANG L J, LIU F H, ZHAO B Y, [53] BALACH J, LINNEMANN J, JAUMANN T, [54] BEN-DOR L, SHIMONY Y.Crystal structure, magnetic susceptibility and electrical conductivity of pure and NiO-doped MoO2 and WO2.Materials Research Bulletin, 1974, 9(6): 837-44. [55] SAMSONOV G.难熔化合物手册. 北京: 中国工业出版社, 1965: 1-147. [56] FENG L S, QUN C X, LIN M Y, [57] TAO Q, MA S L, CUI T, [58] SHEN Y F, XU C, HUANG M, [59] GUPTA S, PATEL M K, MIOTELLO A, [60] WU F, WU C.New secondary batteries and their key materials based on the concept of multi-electron reaction.Chinese Science Bulletin, 2014, 59(27): 3369-3376. [61] GUAN B, FAN L S, WU X, [62] GUAN B, ZHANG Y, FAN L S, [63] GUAN B, SUN X, ZHANG Y, [64] BASU B, RAJU GSURI A.Processing and properties of monolithic TiB2 based materials.International Materials Reviews, 2006, 51(6): 352-374. [65] LI C C, LIU X B, ZHU L, [66] LI Z J, JIANG H R, LAI N C, [67] JIN L M, NI J, SHEN C, [68] WU R, XU H K, ZHAO Y W, [69] HE J R, BHARGAV A, MANTHIRAM A.Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy- density lithium-sulfur batteries.Advanced Materials, 2020, 32(40): 2004741. [70] PANG Q, KWOK C Y, KUNDU D, [71] YU T T, GAO P F, ZHANG Y, [72] JANA S, THOMAS S, LEE C H, [73] SUN C, HAI C X, ZHOU Y, [74] ARENAL R, LOPEZ BEZANILLA A.Boron nitride materials: an overview from 0D to 3D (nano)structures.Wiley Interdisciplinary Reviews-Computational Molecular Science, 2015, 5(4): 299-309. [75] JIANG X F, WENG Q H, WANG X B, [76] PRAKASH A, NEHATE S D, SUNDARAM K B.Boron carbon nitride based metal-insulator-metal UV detectors for harsh environment applications.Optics Letters, 2016, 41(18): 4249-4252. [77] ZHAO Y M, YANG L, ZHAO J X, [78] YI Y K, LI H P, CHANG H H, [79] HE B, LI W C, ZHANG Y, [80] DENG D R, BAI C D, XUE F, [81] SUN K, GUO P Q, SHANG X N, [82] FAN Y, YANG Z, HUA W X, [83] KIM P J H, SEO J, FU K, [84] PRAMANICK A, DEY P P, DAS P K.Microstructure, phase and electrical conductivity analyses of spark plasma sintered boron carbide machined with WEDM.Ceramics International, 2020, 46(3): 2887-2894. [85] YEGANEH M, SARAF H H, KAFI F, [86] CHANG Y K, SUN X H, MA M D, [87] LUO L, CHUNG S H, ASL H Y, [88] SONG N N, GAO Z, ZHANG Y Y, [89] ZHANG R H, CHI C, WU M C, |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[9] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[10] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[11] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[12] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[13] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||