无机材料学报 ›› 2021, Vol. 36 ›› Issue (7): 773-778.DOI: 10.15541/jim20200529 CSTR: 32189.14.10.15541/jim20200529
所属专题: MXene材料专辑(2020~2021); 【虚拟专辑】层状MAX,MXene及其他二维材料
李友兵1,2(), 秦彦卿1,2, 陈科1,2, 陈露1,2, 张霄1,2, 丁浩明1,2, 李勉1,2, 张一鸣1,2, 都时禹1,2, 柴之芳1,2, 黄庆1,2(
)
收稿日期:
2020-09-09
修回日期:
2020-10-22
出版日期:
2021-07-20
网络出版日期:
2020-11-05
通讯作者:
黄庆, 研究员. E-mail:huangqing@nimte.ac.cn
作者简介:
李友兵(1990-), 男, 博士. E-mail:liyoubing@nimte.ac.cn
LI Youbing1,2(), QIN Yanqing1,2, CHEN Ke1,2, CHEN Lu1,2, ZHANG Xiao1,2, DING Haoming1,2, LI Mian1,2, ZHANG Yiming1,2, DU Shiyu1,2, CHAI Zhifang1,2, HUANG Qing1,2(
)
Received:
2020-09-09
Revised:
2020-10-22
Published:
2021-07-20
Online:
2020-11-05
Contact:
HUANG Qing, Professor. E-mail:huangqing@nimte.ac.cn
About author:
LI Youbing(1990-), male, PhD. E-mail:liyoubing@nimte.ac.cn
Supported by:
摘要:
MAX相是一类兼具金属和陶瓷特性的三元层状材料, 也是合成二维MXenes的前驱体材料。理论预测稳定的三元层状MAX相材料约有600余种, 目前实验合成的三元层状MAX相材料已有80余种, 但M位主要为前过渡族金属, 而对M为稀土元素的三元MAX相鲜有报道。本研究以Sc、Sn, 和C元素粉为原料, 通过熔盐法合成了M位为稀土元素Sc的全新Sc2SnC MAX相材料。结合X射线衍射、扫描电子显微镜和X射线能谱等分析手段, 确认Sc2SnC MAX的相组成和微观结构。并通过密度泛函理论计算了Sc2SnC MAX相的结构稳定性、晶格参数、力学和电子性质, 理论计算结果表明Sc2SnC热力学稳定, Sc-3d电子在费米能级上占主导地位, MAX相呈金属性质。
中图分类号:
李友兵, 秦彦卿, 陈科, 陈露, 张霄, 丁浩明, 李勉, 张一鸣, 都时禹, 柴之芳, 黄庆. 熔盐法合成纳米层状Sc2SnC MAX相[J]. 无机材料学报, 2021, 36(7): 773-778.
LI Youbing, QIN Yanqing, CHEN Ke, CHEN Lu, ZHANG Xiao, DING Haoming, LI Mian, ZHANG Yiming, DU Shiyu, CHAI Zhifang, HUANG Qing. Molten Salt Synthesis of Nanolaminated Sc2SnC MAX Phase[J]. Journal of Inorganic Materials, 2021, 36(7): 773-778.
Fig. 1 Comparison of XRD patterns between (a) powders synthesized through the reaction between Sc, Sn, and C mixtures, and (b) the simulated one of Sc2SnC
Site | Element | x | y | z | Symmetry | Wyckoff symbol |
---|---|---|---|---|---|---|
M | Sc | 1/3 | 2/3 | 0.5786 | 3m | 4f |
A | Sn | 1/3 | 2/3 | 0.2500 | m2 | 2d |
X | C | 0 | 0 | 0 | m | 2a |
Table 1 Atomic positions in Sc2SnC determined from the Rietveld refinement
Site | Element | x | y | z | Symmetry | Wyckoff symbol |
---|---|---|---|---|---|---|
M | Sc | 1/3 | 2/3 | 0.5786 | 3m | 4f |
A | Sn | 1/3 | 2/3 | 0.2500 | m2 | 2d |
X | C | 0 | 0 | 0 | m | 2a |
Fig. 4 (a) Crystal structure , (b) calculated phonon dispersion and (c) band structure of Sc2SnC, and (d) projected density of Sc, Sn, and C atom states in the Sc2SnC
Compound | a/nm | c/nm | C11 | C12 | C13 | C33 | C44 | C66 | B | G | E | G/B | v | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc2SnC | 0.3368 | 1.4653 | 197 | 63 | 47 | 182 | 67 | 53 | 100 | 63 | 157 | 0.630 | 0.238 | This work |
V2SnC | 0.3134 | 1.2943 | 336 | 126 | 122 | 304 | 85 | 105 | 190 | 95 | 244 | 0.500 | 0.286 | [35] |
Ti2SnC | 0.3136 | 1.3641 | 337 | 86 | 102 | 329 | 169 | 126 | 176 | 138 | 328 | 0.784 | 0.188 | [39] |
Zr2SnC | 0.3352 | 1.4681 | 269 | 80 | 107 | 290 | 148 | 94 | 157 | 110 | 368 | 0.700 | 0.215 | [39] |
Hf2SnC | 0.3308 | 1.4450 | 330 | 54 | 126 | 292 | 167 | 138 | 173 | 132 | 316 | 0.763 | 0.195 | [39] |
Nb2SnC | 0.3244 | 1.3754 | 341 | 106 | 169 | 321 | 183 | 118 | 209 | 126 | 314 | 0.603 | 0.250 | [39] |
Table 2 Theoretically predicted Lattice parameters (nm), calculated elastic constants, Cij (GPa), bulk modulus, B (GPa), shear modulus, G (GPa), and Young’s modulus, E (GPa), Pugh ratio, G/B, and Poisson ratio, v, of different compounds
Compound | a/nm | c/nm | C11 | C12 | C13 | C33 | C44 | C66 | B | G | E | G/B | v | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc2SnC | 0.3368 | 1.4653 | 197 | 63 | 47 | 182 | 67 | 53 | 100 | 63 | 157 | 0.630 | 0.238 | This work |
V2SnC | 0.3134 | 1.2943 | 336 | 126 | 122 | 304 | 85 | 105 | 190 | 95 | 244 | 0.500 | 0.286 | [35] |
Ti2SnC | 0.3136 | 1.3641 | 337 | 86 | 102 | 329 | 169 | 126 | 176 | 138 | 328 | 0.784 | 0.188 | [39] |
Zr2SnC | 0.3352 | 1.4681 | 269 | 80 | 107 | 290 | 148 | 94 | 157 | 110 | 368 | 0.700 | 0.215 | [39] |
Hf2SnC | 0.3308 | 1.4450 | 330 | 54 | 126 | 292 | 167 | 138 | 173 | 132 | 316 | 0.763 | 0.195 | [39] |
Nb2SnC | 0.3244 | 1.3754 | 341 | 106 | 169 | 321 | 183 | 118 | 209 | 126 | 314 | 0.603 | 0.250 | [39] |
[1] |
BARSOUM M W. The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 2000,28(1):201-281.
DOI URL |
[2] |
SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases. Trends in Chemistry, 2009,1(2):210-223.
DOI URL |
[3] |
EKLUND P, BECKERS M, JANSSON U, et al. The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films, 2010,518(8):1851-1878.
DOI URL |
[4] |
WHITTLE K R, BLACKFORD M, AUGHTERSON M R, et al. Radiation tolerance of Mn+1AXn phases, Ti3AlC2 and Ti3SiC2. Acta Materialia, 2010,58(13):4362-4368.
DOI URL |
[5] |
FASHANDI H, DAHLQVIST M, LU J, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 2017,16(8):814-818.
DOI URL |
[6] | WARD J, BOWDEN D, PRESTAT E, et al. Corrosion performance of Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC MAX phases in simulated primary water conditions. Corrosion Science, 2018,39:444-453. |
[7] |
ZHU Y, ZHOU A, JI Y, et al. Tribological properties of Ti3SiC2 coupled with different counterfaces. Ceramics International, 2012,41(5):6950-6955.
DOI URL |
[8] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23(37):4248-4253.
DOI URL |
[9] |
LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013,341(6153):1502-1505.
DOI URL |
[10] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017,2(2):16098.
DOI URL |
[11] |
LI Y B, SHAO H, LIN Z F, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020,19(8):894-899.
DOI URL |
[12] |
NECHICHE M, GAUTHIER-BRUNET V, MAUCHAMP V, et al. Synthesis and characterization of a new (Ti1-ε,Cuε)3(Al,Cu)C2 MAX phase solid solution. Journal of the European Ceramic Society, 2019,37(2):459-466.
DOI URL |
[13] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019,141(11):4730-4737.
DOI URL |
[14] |
LI Y, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019,13(8):9198-9205.
DOI URL |
[15] |
DING H, LI Y B, LU J, et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Materials Research Letters, 2019,7(12):510-516.
DOI URL |
[16] | LI Y B, LU J, LI M, et al. Multielemental single-atom-thick A layers in nanolaminated V2(Sn,A)C (A=Fe, Co, Ni, Mn) for tailoring magnetic properties. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(2):820-825. |
[17] |
ARYAL S, SAKIDJA R, BARSOUM M W, et al. A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Physical Status Solidi, 2014,251(8):1480-1497.
DOI URL |
[18] |
BOUHEMADOU A, KHENATA R, KHAROUBI M, et al. First-principles study of structural and elastic properties of Sc2AC (A=Al, Ga, In, Tl). Solid State Communications, 2008,146(3/4):175-180.
DOI URL |
[19] |
COVER M F, WARSCHKOW O, BILEK M M, et al. A comprehensive survey of MAX phase elastic properties. Journal of Physics: Condensed Matter, 2009,21(30):305403.
DOI URL |
[20] |
CHOWDHURY A, ALI M A, HOSSAIN M M, et al. Predicted MAX phase Sc2InC: dynamical stability, vibrational and optical properties. Physical Status Solidi, 2018,255(3):1700235.
DOI URL |
[21] |
ZHA X H, REN J C, FENG L, et al. Bipolar magnetic semiconductors among intermediate states during the conversion from Sc2C(OH)2 to Sc2CO2 MXene. Nanoscale, 2018,10(18):8763-8771.
DOI URL |
[22] |
KUCHIDA S, MURANAKA T, KAWASHIMA K, et al. Superconductivity in Lu2SnC. Physica C: Superconductivity, 2013,494:77-79.
DOI URL |
[23] |
LIU X, FECHLER N, ANTONIETTI M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chemical Society Reviews, 2013,42(21):8237-8265.
DOI URL |
[24] |
WANG B, ZHOU A, HU Q, et al. Synthesis and oxidation resistance of V2AlC powders by molten salt method. International Journal of Applied Ceramic Technology, 2017,14(5):873-879.
DOI URL |
[25] |
TIAN W B, WANG P L, KAN Y M, et al. Cr2AlC powders prepared by molten salt method. Journal of Alloys and Compounds, 2008,461(1/2):L5-L10.
DOI URL |
[26] |
GALVIN T, HYATT N C, RAINFORTH W M, et al. Molten salt synthesis of MAX phases in the Ti-Al-C system. Journal of the European Ceramic Society, 2018,38(14):4585-4589.
DOI URL |
[27] |
GUO X, WANG J, YANG S, et al. Preparation of Ti3SiC2 powders by the molten salt method. Materials Letters, 2013,111:211-213.
DOI URL |
[28] |
ROY C, BANERJEE P, BHATTACHARYYAh S. Molten salt shielded synthesis (MS3) of Ti2AlN and V2AlC MAX phase powders in open air. Journal of the European Ceramic Society, 2020,40(3):923-929.
DOI URL |
[29] |
CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 2005,220:567-570.
DOI URL |
[30] |
SEGALL M, LINDAN P J, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002,14:2717-2744.
DOI URL |
[31] |
PERDEW J P, BURKE K, ERMZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996,77(18):3865-3868.
DOI URL |
[32] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990,41(11):7892-7895.
DOI URL |
[33] |
FRANK W, ELSASSER C, FAHNLE M. Ab initio force-constant method for phonon dispersions in alkali metals. Physical Review Letters, 1995,74(10):1791-1794.
DOI URL |
[34] |
PARLINSKI K, LI Z Q, KAWAZOE Y. First-principles determination of the soft mode in cubic ZrO2. Physical Review Letters, 1997,78(21):4063-4066.
DOI URL |
[35] | XU Q, ZHOU Y, ZHANG H, et al. Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. Journal of Advanced Ceramics, 2020,29(4):481-492. |
[36] | BORN M, MISRA R D. On the stability of crystal lattices. Mathematical Proceedings of the Cambridge Philosophical Society, 1940,36(4):466-478. |
[37] |
KOC H, OZISIK H, DELIGOZ E, et al. Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. Journal of Molecular Modeling, 2014,20(4):2180.
DOI URL |
[38] |
PUGH S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1954,45(367):823-843
DOI URL |
[39] |
KANOUN M B, GOUMRI-SAID S, RESHAK A H. Theoretical study of mechanical, electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC. Computational Materials Science, 2009,47(2):491-500.
DOI URL |
[1] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[2] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[3] | 丁浩明, 李勉, 李友兵, 陈科, 肖昱琨, 周洁, 陶泉争, 尹航, 柏跃磊, 张毕堃, 孙志梅, 王俊杰, 张一鸣, 黄振莺, 张培根, 孙正明, 韩美康, 赵双, 王晨旭, 黄庆. 三元层状材料结构调控及性能研究进展[J]. 无机材料学报, 2023, 38(8): 845-884. |
[4] | 丁健翔, 张凯歌, 柳东明, 郑伟, 张培根, 孙正明. Ti3AlC2陶瓷及其衍生物Ti3C2Tx增强的Ag基电接触材料[J]. 无机材料学报, 2022, 37(5): 567-573. |
[5] | 张霄, 李友兵, 陈科, 丁浩明, 陈露, 李勉, 史蓉蓉, 柴之芳, 黄庆. M位与A位双固溶MAX相的磁学性能研究[J]. 无机材料学报, 2021, 36(12): 1247-1255. |
[6] | 李勉, 黄庆. 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料(MXene)研究趋势与展望[J]. 无机材料学报, 2020, 35(1): 1-7. |
[7] | 党潇琳, 范晓孟, 殷小玮, 马昱昭, 马晓康. 多功能一体化MAX相改性连续纤维增韧陶瓷基复合材料的研究进展[J]. 无机材料学报, 2020, 35(1): 29-34. |
[8] | 金森, 王作通, 杜亚琼, 胡前库, 禹建功, 周爱国. 双A层MAX相Mo2Ga2C的热压烧结研究[J]. 无机材料学报, 2020, 35(1): 41-45. |
[9] | 陈雷雷, 邓子旋, 李勉, 李朋, 常可可, 黄峰, 都时禹, 黄庆. 新型MAX相的相图热力学研究[J]. 无机材料学报, 2020, 35(1): 35-40. |
[10] | 李勉, 李友兵, 罗侃, LU Jun, EKLUND Per, PERSSON Per, ROSEN Johanna, HULTMAN Lars, 都时禹, 黄政仁, 黄庆. 基于A位元素置换策略合成新型MAX相材料Ti3ZnC2[J]. 无机材料学报, 2019, 34(1): 60-64. |
[11] | 张志萍, 刘红飞, 潘坤旻, 陈小兵, 曾祥华. Sc2W3O12薄膜制备及其负热膨胀性能[J]. 无机材料学报, 2015, 30(12): 1278-1282. |
[12] | 梅兴志, 罗永春, 张国庆, 康 龙. 稀土系A2B7型La1-xScxNi2.6Co0.3Mn0.5Al0.1(x = 0~0.5)储氢合金相结构和电化学性能研究[J]. 无机材料学报, 2015, 30(10): 1049-1055. |
[13] | 崔云涛, 王金淑, 刘 伟, 王 茜, 王凯风 . 含钪扩散阴极用铝酸盐的制备及发射性能研究[J]. 无机材料学报, 2012, 27(5): 480-484. |
[14] | 冯 涛,蔡 虹,漆云凤,蒋丹宇,周 军,楼祺洪,施剑林. Nd:Y3Sc1.5Al3.5O12透明陶瓷的光谱性能以及激光输出[J]. 无机材料学报, 2008, 23(5): 1041-1044. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||