无机材料学报 ›› 2019, Vol. 34 ›› Issue (10): 1097-1102.DOI: 10.15541/jim20190058 CSTR: 32189.14.10.15541/jim20190058

所属专题: 离子电池材料

• 研究论文 • 上一篇    下一篇

Na3V2(PO4)2F3@V2O5-x复合材料的制备及储钠性能研究

王家虎1,王文馨1,杜鹏1,胡芳东1,姜晓蕾1(),杨剑2()   

  1. 1. 临沂大学 化学化工学院, 临沂 276005
    2. 山东大学 化学与化工学院, 济南 250000
  • 收稿日期:2019-01-28 修回日期:2019-03-26 出版日期:2019-09-23 网络出版日期:2019-05-29
  • 作者简介:王家虎(1998-), 男, 本科生. E-mail: 2909099985@qq.com
  • 基金资助:
    国家自然科学基金(21701079);山东省自然科学基金(ZR2017BB016);地方高校国家级大学生创新创业训练计划项目(201710452017);山东省本科教改项目(Z2018S006)

Synthesis of Na3V2(PO4)2F3@V2O5-x as Cathode Material for Sodium-ion Battery

WANG Jia-Hu1,WANG Wen-Xin1,DU Peng1,HU Fang-Dong1,JIANG Xiao-Lei1(),YANG Jian2()   

  1. 1. School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
    2. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250000, China
  • Received:2019-01-28 Revised:2019-03-26 Published:2019-09-23 Online:2019-05-29
  • Supported by:
    National Natural Science Foundation of China(21701079);Shandong Provincial Natural Science Foundation(ZR2017BB016);Undergraduate Innovation and Entrepreneurship Training Program(201710452017);Undergraduate Education Reform Project of Shandong Province(Z2018S006)

摘要:

当前制约钠离子电池发展的主要因素包括较低的能量/功率密度和较差的循环性能, 而在正极材料表面包覆含氧缺陷金属氧化物层, 可以有效提高材料的电子导电率, 保证高振实密度、能量密度和功率密度。本文通过温和的溶剂热反应制备Na3V2(PO4)2F3纳米片前驱体并结合高温煅烧合成Na3V2(PO4)2F3@V2O5-x复合材料。其结构通过XRD、TEM、SEM、XPS和TGA测试进行表征。作为钠离子电池的正极材料, 展现了优异的循环性能和倍率性能。在0.2C倍率下, 首圈放电比容量为123 mAh?g -1, 循环140圈后容量保持在109 mAh?g -1。当电流密度提高至1C, 首圈放电比容量达到72 mAh?g -1, 充放电循环500圈后, 容量保持率高达84%。优异的电化学性能归因于材料表面包覆的具有丰富结构缺陷的无定型层, 有效提高了离子的扩散和电子导电率。此方法将有助于钠离子电池的实际应用。

关键词: 正极材料, 氧缺陷, 电化学性能, 钠离子电池

Abstract:

Low energy/power density and inferior cycling stability are bottlenecks to restrict the applications of sodium-ion batteries. Recently, coating the surface of cathode material by metal oxides containing oxygen vacancies, was regarded as an effective strategy to improve electrical conductivity and power/energy density. In this study, Na3V2(PO4)2F3@V2O5-x nanosheets were synthesized via hydrothermal strategy followed by heat treatment. X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis were applied to investigate the structure of Na3V2(PO4)2F3@V2O5-x. As a cathode of sodium- ion batteries, Na3V2(PO4)2F3@V2O5-x delivers excellent cycling stability and rate capability. It exhibits an initial discharge capacity of 123 mAh?g -1 at 0.2C, and a discharge capacity of 109 mAh?g -1 after 140 cycles. At 1C, its initial reversible capacity is 72 mAh?g -1, which remains 84% after 500 cycles. The outstanding electrochemical property could be ascribed to its enhanced sodium-diffusion and improved electronic conductivity induced by disordered surface coating. Furthermore, it encourages more investigations into practical sodium-ion battery applications.

Key words: cathode material, oxygen deficient, electrochemical performance, sodium-ion battery

中图分类号: