[1] LIU B, ZHANG J G, XU W.Advancing lithium metal batteries.Joule, 2018, 2(5): 833-845. [2] LI C, CHEN K, ZHOU X,et al. Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. npj Computational Materials, 2018, 4(1): 22. [3] LIN D, LIU Y, CUI Y.Reviving the lithium metal anode for high-energy batteries.Nature Nanotechnology, 2017, 12(3): 194-206. [4] ZHAI P, LIU L, GU X,et al. Interface engineering for lithium metal anodes in liquid electrolyte. Advanced Energy Materials, 2020, 10(34): 2001257. [5] YOO H D, SHTERENBERG I, GOFER Y,et al. Mg rechargeable batteries: an on-going challenge. Energy & Environmental Science, 2013, 6(8): 2265-2279. [6] ZHOU X, TIAN J, HU J,et al. High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Advanced Materials, 2018, 30(7): 1704166. [7] MULDOON J, BUCUR C B, GREGORY T.Quest for nonaqueous multivalent secondary batteries: magnesium and beyond.Chemical Reviews, 2014, 114(23): 11683-11720. [8] AURBACH D, GIZBAR H, SCHECHTER A,et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. Journal of The Electrochemical Society, 2002, 149(2): A115-A121. [9] EAVES-RATHERT J, MOYER K, ZOHAIR M,et al. Kinetic-versus diffusion-driven three-dimensional growth in magnesium metal batteries. Joule, 2020, 4(6): 1324-1336. [10] LU Z, SCHECHTER A, MOSHKOVICH M,et al. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. Journal of Electroanalytical Chemistry, 1999, 466(2): 203-217. [11] SON S B, GAO T, HARVEY S P,et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nature Chemistry, 2018, 10: 532-539. [12] BUCUR C B, GREGORY T, OLIVER A G,et al. Confession of a magnesium battery. The Journal of Physical Chemistry Letters, 2015, 6(18): 3578-3591. [13] LEVI E, LEVI M D, CHASID O,et al. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. Journal of Electroceramics, 2009, 22: 13-19. [14] YAGI S, ICHITSUBO T, SHIRAI Y,et al. A concept of dual-salt polyvalent-metal storage battery. Journal of Materials Chemistry A, 2014, 2(4): 1144-1149. [15] ZHANG Y, XIE J, HAN Y,et al. Dual-salt Mg-based batteries with conversion cathodes. Advanced Functional Materials, 2015, 25(47): 7300-7308. [16] WU N, YANG Z Z, YAO H R,et al. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angewandte Chemie International Edition, 2015, 127(19): 5849-5853. [17] CHO J H, AYKOL M, KIM S,et al. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. Journal of the American Chemical Society, 2014, 136(46): 16116-16119. [18] ZHANG Z, XU H, CUI Z,et al. High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. Journal of Materials Chemistry A, 2016, 4(6): 2277-2285. [19] GAO T, HAN F, ZHU Y,et al. Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Advanced Energy Materials, 2015, 5(5): 1401507. [20] SU S, NULI Y, HUANG Z,et al. A high-performance rechargeable Mg2+/Li+ hybrid battery using one-dimensional mesoporous TiO2(B) nanoflakes as the cathode. ACS Applied Materials & Interfaces, 2016, 8(11): 7111-7117. [21] PAN W, LIU X, MIAO X,et al. Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. Journal of Solid State Electrochemistry, 2015, 19: 3347-3353. [22] CHENG Y, CHANG H J, DONG H,et al. Rechargeable Mg-Li hybrid batteries: status and challenges. Journal of Material Research, 2016, 31: 3125-3141. [23] CHEN X, WANG S, WANG H.High performance hybrid Mg-Li ion batteries with conversion cathodes for low cost energy storage.Electrochica Acta, 2018, 265: 175-183. [24] WU C, HU J, TIAN J,et al. Stacking of tailored chalcogenide nanosheets around MoO2-C conductive stakes modulated by a hybrid POM⊂MOF precursor template: composite conversion- insertion cathodes for rechargeable Mg-Li dual-salt batteries. ACS Applied Materials & Interfaces, 2019, 11(6): 5966-5977. [25] GAO T, NOKED M, PEARSE A J,et al. Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. Journal of the American Chemical Society, 2015, 137(38): 12388-12383. [26] YUAN H, YANG Y, NULI Y,et al. A conductive selenized polyacrylonitrile cathode in nucleophilic Mg2+/Li+ hybrid electrolytes for magnesium-selenium batteries. Journal of Materials Chemistry A, 2018, 6(35): 17075-17085. [27] WANG Q, ZOU R, XIA W,et al. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small, 2015, 11(21): 2511-2517. [28] LIU L, KANKAM I, ZHUANG H L.Single-layer antiferromagnetic semiconductor CoS2 with pentagonal structure.Physical Review B, 2018, 98(20): 205425-205430. [29] LIU W, HU E, JIANG H,et al. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 2016, 7: 10771. [30] MULDOON J, BUCUR C B, OLIVER A,et al. Corrosion of magnesium electrolytes: chlorides-the culprit. Energy & Environmental Science, 2013, 6(2): 482-487. [31] TIAN J, CAO D, ZHOU X,et al. High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg-Li dual-salt electrolyte. ACS Nano, 2018, 12(4): 3424-3435. [32] TAO M, DU G, YANG T,et al. MXene-derived three-dimensional carbon nanotube network encapsulate CoS2 nanoparticles as an anode material for solid-state sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8(6): 3018-3026. [33] JIN H, WANG J, SU D,et al. In situ cobalt-cobalt oxide/N-doped carbon hybrid as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. Journal of the American Chemical Society, 2015, 137(7): 2688-2694. [34] GUO C, ZHANG W, LIU Y,et al. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Advanced Functional Materials, 2019, 29(29): 1901925. [35] ZU C X, LI H.Thermodynamic analysis on energy densities of batteries.Energy & Environmental Science, 2011, 4(8): 2614-2624. |