无机材料学报 ›› 2023, Vol. 38 ›› Issue (6): 656-662.DOI: 10.15541/jim20220511
孔国强1(), 冷明哲2(), 周战荣2(), 夏池1, 沈晓芳2
收稿日期:
2022-09-01
修回日期:
2022-11-14
出版日期:
2022-12-09
网络出版日期:
2022-12-09
通讯作者:
冷明哲, 讲师. E-mail: lmz_198810@163.com;作者简介:
孔国强(1986-), 男, 博士, 高级工程师. E-mail: kongguoqiang2010@163.com
基金资助:
KONG Guoqiang1(), LENG Mingzhe2(), ZHOU Zhanrong2(), XIA Chi1, SHEN Xiaofang2
Received:
2022-09-01
Revised:
2022-11-14
Published:
2022-12-09
Online:
2022-12-09
Contact:
LENG Mingzhe, lecturer. E-mail: lmz_198810@163.com;About author:
KONG Guoqiang (1986-), male, PhD, senior engineer. E-mail: kongguoqiang2010@163.com
Supported by:
摘要:
提高钠离子电池正极材料的循环稳定性和比容量是实现其广泛应用的关键, 基于引入特定杂元素可优化正极材料结构稳定性和比容量的策略, 本研究采用便捷的固相反应法制备O3-Na0.9Ni0.5-xMn0.3Ti0.2SbxO2(NMTSbx, x=0, 0.02, 0.04, 0.06)系列层状氧化物正极材料, 对比研究了Sb掺杂对Na0.9Ni0.5Mn0.3Ti0.2O2正极材料储钠性能的影响。测试结果表明, 引入Sb后过渡金属层中氧原子之间的静电斥力减小, 晶格间距扩大, 有利于Na+的脱嵌。且掺杂Sb所造成的强电子离域降低了整个系统的能量, 获得了更有利于循环充放电的稳定性结构。在2.0~4.2 V测试范围下, 未掺杂的NMTSb0在1C(240 mA·g−1)倍率下初始放电比容量为122.8 mAh·g-1, 200圈循环后容量保持率仅为41.5%, 掺杂后的NMTSb0.04在1C倍率下初始放电比容量达到135.2 mAh·g-1, 200圈循环后容量保持率为70%, 掺杂后材料的放电容量明显提高, 循环寿命显著延长。本研究有助于推动钠离子电池的进一步发展。
中图分类号:
孔国强, 冷明哲, 周战荣, 夏池, 沈晓芳. Sb掺杂O3型Na0.9Ni0.5Mn0.3Ti0.2O2钠离子电池正极材料[J]. 无机材料学报, 2023, 38(6): 656-662.
KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery[J]. Journal of Inorganic Materials, 2023, 38(6): 656-662.
图6 NMTSbx作为正极材料的钠离子电池性能
Fig. 6 Performance of Na-ion batteries with NMTSbx as electrodes (a) Charging and discharging curves of Na-ion batteries with samples as electrodes for the first cycle at 1C; (b) Cycling performance of Na-ion batteries with samples as electrodes at 1C for 200 cycles; (c, d) Charging and discharging curves of Na-ion batteries with samples as electrodes for initial 3 cycles at 5C; (e) Coulombic efficiencies of Na-ion batteries with NMTSbx as electrodes for 200 cycles at 1C Colorful figures are available on website
图S1 NMTSb0 (a, b)和NMTSb0.04 (c, d)的HRTEM照片,(b, d)中插图为对应的SEAD照片
Fig. S1 HRTEM images of NMT (a, b) and NMTSb0.04 (c, d) with inset in (b, d) showing corresponding SEAD images
Na | Ni | Mn | Ti | Sb | |
---|---|---|---|---|---|
NMTSb0 | 0.913 | 0.486 | 0.288 | 0.181 | 0 |
NMTSb0.02 | 0.924 | 0.471 | 0.284 | 0.186 | 0.023 |
NMTSb0.04 | 0.920 | 0.452 | 0.287 | 0.184 | 0.039 |
NMTSb0.06 | 0.929 | 0.435 | 0.279 | 0.184 | 0.061 |
表S1 O3-NMTSbx (x=0, 0.02, 0.04, 0.06)的ICP-AES结果(化学计量比)
Table S1 ICP-AES results of O3-NMTSbx (x=0, 0.02, 0.04, 0.06) (Stoichiometric ratio)
Na | Ni | Mn | Ti | Sb | |
---|---|---|---|---|---|
NMTSb0 | 0.913 | 0.486 | 0.288 | 0.181 | 0 |
NMTSb0.02 | 0.924 | 0.471 | 0.284 | 0.186 | 0.023 |
NMTSb0.04 | 0.920 | 0.452 | 0.287 | 0.184 | 0.039 |
NMTSb0.06 | 0.929 | 0.435 | 0.279 | 0.184 | 0.061 |
a/nm | b/nm | c/nm | V/nm3 | Rwp/% | Rp/% | |
---|---|---|---|---|---|---|
NMTSb0 | 0.29812 | 0.29812 | 1.600487 | 0.1232 | 4.92 | 5.53 |
NMTSb0.04 | 0.29790 | 0.29790 | 1.608391 | 0.1236 | 5.65 | 6.32 |
表S2 NMTSb0和NMTSb0.04的晶胞参数
Table S2 Lattice parameters of materials with NMTSb0and NMTSb0.04
a/nm | b/nm | c/nm | V/nm3 | Rwp/% | Rp/% | |
---|---|---|---|---|---|---|
NMTSb0 | 0.29812 | 0.29812 | 1.600487 | 0.1232 | 4.92 | 5.53 |
NMTSb0.04 | 0.29790 | 0.29790 | 1.608391 | 0.1236 | 5.65 | 6.32 |
[1] |
MA A, YIN Z, WANG J, et al. Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics, 2020, 26(4):1797.
DOI |
[2] |
ZHOU D, ZENG C, XIANG J, et al. Review on Mn-based and Fe-based layered cathode materials for sodium-ion batteries. Ionics, 2022, 28(5): 2029.
DOI |
[3] |
YAO H R, ZHENG L, XIN S, et al. Air-stability of sodium-based layered-oxide cathode materials. Science China-Chemistry, 2022, 65(6):1076.
DOI |
[4] |
LIU Z, ZHOU C, LIU J, et al. Phase tuning of P2/O3-type layered oxide cathode for sodium ion batteries via a simple Li/F co-doping route. Chemical Engineering Journal, 2022, 431: 134273.
DOI URL |
[5] |
LI M, JAFTA CJ, GENG L, et al. Correlation of oxygen anion redox activity to in-plane honeycomb cation ordering in NaxNiyMn1-yO2 cathodes. Advanced Energy and Sustainability Research, 2022, 3(7):2200027.
DOI URL |
[6] |
LI J, LI H, HUANG Q, et al. Study on the mechanism of the influence of doping on the properties of cathode materials of sodium ion batteries. Progress in Chemistry, 2022, 34(4):857.
DOI |
[7] | CHANG Y X, YU L, XING X, et al. Ion substitution strategy of manganese-based layered oxide cathodes for advanced and low- cost sodium ion batteries. Chemical Record, 2022, 6: 202200122. |
[8] |
YIN Y X, WANG P F, YOU Y, et al. An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. Journal of Materials Chemistry A, 2016, 4: 17660.
DOI URL |
[9] |
TAN L, WU Q, LIU Z, et al. Ti-substituted O3-type layered oxide cathode material with high-voltage stability for sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 622: 1037.
DOI PMID |
[10] | YUAN D D, WANG Y X, CAO Y L, et al. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Applied Materials Interfaces, 2015, 16(7):8585. |
[11] |
YUAN X G, GUO Y J, GAN L, et al. A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for Na-ion batteries. Advanced Functional Materials, 2022, 32(17):2111466.
DOI URL |
[12] | ZHANG Q, WANG Z, LI X, et al. Mitigating the voltage fading and air sensitivity of O3-type NaNi0.4Mn0.4Cu0.1Ti0.1O2 cathode material via La doping. Chemical Engineering Journal, 2022, 43: 133456. |
[13] | FIELDEN R, OBROVAC M N. Investigation of the NaNixMn1-xO2 (0≤x≤1) system for Na-ion battery cathode materials. Journal of the Electrochemical Society, 2015, 162(3):453. |
[14] |
MATHIYALAGAN K, KARUPPIAH K, PONNAIAH A, et al. Significant role of magnesium substitution in improved performance of layered O3-Na-Mn-Ni-Mg-O cathode material for developing sodium-ion batteries. International Journal of Energy Research, 2022, 46: 10656.
DOI URL |
[15] | ZHOU C, YANG L, ZHOU C, et al. Co-substitution enhances the rate capability and stabilizes the cyclic performance of O3-type cathode NaNi0.45-xMn0.25Ti0.3CoxO2 for sodium-ion storage at high voltage. ACS Applied Materials & Interfaces, 2019, 11(8):7906. |
[16] | CHENG Z, FAN X Y, YU L, et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angewandte Chemie International Edition, 2022, 61(19):17728. |
[17] | WALCZAK K, PLEWA A, GHICA C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Materials, 2022, 47: 10656. |
[18] |
DING Y, DING F, RONG X, et al. Mg-doped layered oxide cathode for Na-ion batteries. Chinese Physics B, 2022, 31(6):068201.
DOI |
[19] |
HUANG Q, FENG Y, WANG L, et al. Structure modulation strategy for suppressing high voltage P3-O1 phase transition of O3-NaMn(0.5)Ni(0.5)O2 layered cathode. Chemical Engineering Journal, 2022, 431: 133454.
DOI URL |
[20] |
WALCZAK K, PLEWA A, GHICA C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide: experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Materials, 2022, 47: 500.
DOI URL |
[21] |
SONG T, CHEN L, GASTOL D, et al. High-voltage stabilization of O3-type layered oxide for sodium-ion batteries by simultaneous tin dual modification. Chemistry of Materials, 2022, 34(9):4153.
DOI PMID |
[22] |
TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias. Journal of Physics Condensed Matter, 2009, 21(8):084204.
DOI URL |
[23] |
SANVILLE E, KENNY S D, SMITH R, et al. Improved grid-based algorithm for Bader charge allocation. Journal of computational chemistry, 2007, 28(5):899.
PMID |
[24] | 韦帅, 胡朝浩, 钟燕, 等. Sb掺杂LiBiO3电子结构的第一性原理计算. 桂林电子科技大学学报, 2013, 33(4):339. |
[25] |
XU Z, GUO X, WANG J Z, et al. Restraining the octahedron collapse in lithium and manganese rich NCM cathode toward suppressing structure transformation. Advanced Energy Materials, 2022, 12: 2201323.
DOI URL |
[26] | CHEN T R, SHENG T, WU Z G, et al. Cu2+ dual-doped layer- tunnel hybrid Na0.6Mn1-xCuxO2 as a cathode of sodium-ion battery with enhanced structure stability, electrochemical property, and air stability. ACS Applied Materials & Interfaces, 2018, 12(10):10147. |
[27] |
FENG T, LI L, SHI Q, et al. Evidence for the influence of polaron delocalization on the electrical transport in LiNi0.4+xMn0.4-xCo0.2O2. Physical Chemistry Chemical Physics, 2020, 22(4): 2054.
DOI URL |
[28] |
YADAV I, DUTTA S, PANDEY A, et al. Evolution of TiOx-SiOx nano-composite during annealing of ultrathin titanium oxide films on Si substrate. Ceramics International, 2020, 46: 19935.
DOI URL |
[29] | SUN Z, DENG X, CHOI J J, et al. Silicon surface passivation by laser processing a Sol-Gel TiOx thin film. ACS Applied Energy Materials, 2018, 1(10):5474. |
[30] | YU L, XING X X, ZHANG S Y, et al. Cation-disordered O3-Na0.8Ni0.6Sb0.4O2 cathode for high-voltage sodium-ion batteries. ACS Applied Materials & Interfaces, 2021, 13(28):32948. |
[31] | KOUTHAMAN M, KANNAN K, ARJUNAN P, et al. Layered O3-type Na9/10Cr1/2Fe1/2O2 as new cathode for rechargeable sodium-ion battery. Colloids and Surfaces A: Physicochemiacl and Engineering Aspects, 2022, 633: 127929. |
[32] |
RYU H H, HAN G, YU T Y, et al. Enhanced cycling stability of O3-type Na[Ni0.5Mn0.5]O2 cathode through Sn addition for sodium-ion batteries. Journal of Physical Chemistry C, 2021, 125(12):6593.
DOI URL |
[33] |
MENG X, ZHANG D, ZHAO Z, et al. O3-NaNi(0.47)Zn(0.03)Mn(0.5)O2 cathode material for durable Na-ion batteries. Journal of Alloys and Compounds, 2021, 887: 161366.
DOI URL |
[34] |
ANANG D A, BHANGE D S, ALI B, et al. New O3-type layer- structured Na0.80[Fe0.40Co0.40Ti0.20]O2 cathode material for rechargeable sodium-ion batteries. Materials (Basel), 2021, 14(9):2363.
DOI URL |
[35] |
LAMB J, MANTHIRAM A. Surface-modified Na(Ni0.3Fe0.4Mn0.3)O2 cathodes with enhanced cycle life and air stability for sodium-ion batteries. ACS Applied Energy Materials, 2021, 4(10):11735.
DOI URL |
[36] |
CHEN C, HUANG W, LI Y, et al. P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy, 2021, 90: 106504.
DOI URL |
[37] | ZHENG Y M, HUANG X B, MENG X M, et al. Copper and zirconium codoped O3-type sodium iron and manganese oxide as the cobalt/nickel-free high-capacity and air-stable cathode for sodium-ion batteries. ACS Applied Materials & Interfaces, 2021, 13(38):45528. |
[1] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[2] | 李涛, 曹鹏飞, 胡力涛, 夏勇, 陈一, 刘跃军, 孙翱魁. NH4+扩层MoS2的制备及其储锌性能研究[J]. 无机材料学报, 2023, 38(1): 79-86. |
[3] | 王洋, 范广新, 刘培, 尹金佩, 刘宝忠, 朱林剑, 罗成果. 钾离子掺杂提高锂离子电池正极锰酸锂性能的微观机制[J]. 无机材料学报, 2022, 37(9): 1023-1029. |
[4] | 李文博, 黄民松, 李月明, 李驰麟. 双盐镁电池CoS2正极材料的电化学性能研究[J]. 无机材料学报, 2022, 37(2): 173-181. |
[5] | 赵伟, 徐阳, 万颖杰, 蔡天逊, 穆金潇, 黄富强. 金属氰胺化合物的结构、合成及电化学储能应用[J]. 无机材料学报, 2022, 37(2): 140-151. |
[6] | 王晶, 徐守冬, 卢中华, 赵壮壮, 陈良, 张鼎, 郭春丽. 钠离子电池中空结构CoSe2/C负极材料的制备及储钠性能研究[J]. 无机材料学报, 2022, 37(12): 1344-1350. |
[7] | 张晓君, 李佳乐, 邱吴劼, 杨淼森, 刘建军. 钠离子电池正极材料P2-Nax[Mg0.33Mn0.67]O2的电化学活性研究[J]. 无机材料学报, 2021, 36(6): 623-628. |
[8] | 曾凡鑫, 刘创, 曹余良. 去合金化制备具有高循环稳定性的纳米多孔Sb/MCNT储钠负极材料[J]. 无机材料学报, 2021, 36(11): 1137-1144. |
[9] | 柯剑煌, 谢凯, 韩喻, 孙巍巍, 罗世强, 刘锦锋. 基于不同共溶剂体系对于高电压正极材料LiCoPO4的形貌控制[J]. 无机材料学报, 2019, 34(6): 618-624. |
[10] | 李勇, 何玮鑫, 郑芯月, 于胜兰, 李海同, 黎弘毅, 张蓉, 王雨. 水系钠离子电池普鲁士蓝正极材料的制备与电化学性能研究[J]. 无机材料学报, 2019, 34(4): 365-372. |
[11] | 王武练, 张军, 王秋实, 陈亮, 刘兆平. 高质量水系钠离子电池正极Fe4[Fe(CN)6]3的合成及其电化学性能[J]. 无机材料学报, 2019, 34(12): 1301-1308. |
[12] | 王家虎, 王文馨, 杜鹏, 胡芳东, 姜晓蕾, 杨剑. Na3V2(PO4)2F3@V2O5-x复合材料的制备及储钠性能研究[J]. 无机材料学报, 2019, 34(10): 1097-1102. |
[13] | 赛喜雅勒图, 王雪莹, 顾庆文, 夏永高, 刘兆平, 何杰. 非化学计量比调控高电压尖晶石正极材料电化学性能研究[J]. 无机材料学报, 2018, 33(9): 993-1000. |
[14] | 肖娜, 潘洋, 宋云, 吴晓京, 傅正文, 周永宁. 锑硅纳米复合薄膜作为钠离子电池负极材料的电化学行为研究[J]. 无机材料学报, 2018, 33(5): 494-500. |
[15] | 李玲, 李运姣, 徐斌, 卢伟胜, 苏千叶, 陈永祥, 李林. 湿法合成LiNixCoyMn1-x-yO2的E-pH图绘制及其电性能[J]. 无机材料学报, 2018, 33(3): 320-324. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||