[1] |
RÖDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc., 2015, 35(6): 1659-1681.
|
[2] |
HONG C H, KIM H P, CHOI B Y, et al. Lead-free piezoceramics - where to move on? J. Materiomics, 2016, 2(1): 1-24.
|
[3] |
RÖDEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc., 2009, 92(6): 1153-1177.
|
[4] |
SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432(7013): 84-87.
|
[5] |
LI T, LOU X, KE X, et al. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater., 2017, 128: 337-344.
|
[6] |
SHI J, FAN H, LIU X, et al. Giant strain response and structure evolution in (Bi0.5Na0.5)0.945-x(Bi0.2Sr0.7□0.1)xBa0.055TiO3 ceramics. J. Eur. Ceram. Soc., 2014, 34(15): 3675-3683.
|
[7] |
LIU D, TIAN C, MA C, et al. Composition, electric-field and temperature induced domain evolution in lead-free Bi0.5Na0.5TiO3- BaTiO3-SrTiO3 solid solutions by piezoresponse force microscopy. Scripta Mater., 2016, 123: 64-68.
|
[8] |
GLAUM J, ZAKHOZHEVA M, ACOSTA M, et al. Influence of B-site disorder on the properties of unpoled Bi1/2Na1/2TiO3- 0.06Ba(ZrxTi1-x)O3 piezoceramics. J. Am. Ceram. Soc., 2016, 99(8): 2801-2808.
|
[9] |
SHI J, FAN H, LIU X, et al. Large electrostrictive strain in (Bi0.5Na0.5)TiO3-BaTiO3-(Sr0.7Bi0.2)TiO3 solid solutions. J. Am. Ceram. Soc., 2014, 97(3): 848-853.
|
[10] |
GOBELJIC D, DITTMER R, R DEL J, et al. Macroscopic and nanoscopic polarization relaxation kinetics in lead-free relaxors Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3-BiZn1/2Ti1/2O3. J. Am. Ceram. Soc., 2014, 97(12): 3904-3912.
|
[11] |
IZUMI M, YAMAMOTO K, SUZUKI M, et al. Large electric- field-induced strain in Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 solid solution single crystals. Appl. Phys. Lett., 2008, 93(24): 242903-1-4.
|
[12] |
SINGH A, CHATTERJEE R. Structural, electrical, strain properties of stoichiometric 1-x-y(Bi0.5Na0.5)TiO3-x(Bi0.5K0.5TiO3)-y(Na0.5K0.5)NbO3 solid solutions. J. Appl. Phys., 2011, 109(2): 024105-1-5.
|
[13] |
KOUNGA A B, ZHANG S T, JO W, et al. Morphotropic phase boundary in Morphotropic phase boundary in (1-x)Bi0.5Na0.5TiO3-xK0.5Na0.5NbO3 lead-free piezoceramics. Appl. Phys. Lett., 2008, 92(22): 222902-1-3.
|
[14] |
GUO H, LIU X, RÖDEL J, et al. Nanofragmentation of ferroelectric domains during polarization fatigue. Adv. Funct. Mater., 2015, 25(2): 270-277.
|
[15] |
SHI J, TIAN W, LIU X, et al. Electric-field induced phase transition and fatigue behaviors of (Bi0.5+x/2Na0.5-x/2)0.94Ba0.06Ti1-xFexO3 ferroelectrics. J. Am. Ceram. Soc., 2017, 100(3): 1080-1090.
|
[16] |
PATTERSON E A, CANN D P. Bipolar piezoelectric fatigue of Bi(Zn0.5Ti0.5)O3-(Bi0.5K0.5)TiO3-(Bi0.5Na0.5)TiO3 Pb-free ceramics. Appl. Phys. Lett., 2012, 101(4): 042905-1-5.
|
[17] |
LUO Z, GRANZOW T, GLAUM J, et al. Effect of ferroelectric long-range order on the unipolar and bipolar electric fatigue in Bi1/2Na1/2TiO3-based lead-free piezoceramics. J. Am. Ceram. Soc., 2011, 94(11): 3927-3933.
|
[18] |
EHMKE M, GLAUM J, JO W, et al. Stabilization of the fatigue-resistant phase by CuO addition in (Bi1/2Na1/2)TiO3 -BaTiO3. J. Am. Ceram. Soc., 2011, 94(8): 2473-2478.
|
[19] |
KUMAR N, CANN D P. Electromechanical strain and bipolar fatigue in Bi(Mg1/2Ti1/2)O3-(Bi1/2K1/2)TiO3-(Bi1/2Na1/2)TiO3 ceramics. J. Appl. Phys., 2013, 114(5): 054102-1-7.
|
[20] |
KUMAR N, ANSELL T Y, CANN D P. Role of point defects in bipolar fatigue behavior of Bi(Mg1/2Ti1/2)O3 modified (Bi1/2K1/2)TiO3- (Bi1/2Na1/2)TiO3 relaxor ceramics. J. Appl. Phys., 2014, 115(15): 154104-1-10.
|
[21] |
LI M, ZHANG H, COOK S N, et al. Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem. Mater., 2015, 27(2): 629-634.
|
[22] |
LIU X, FAN H, SHI J, et al. Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5-xLaxNa0.5-xLixTi1-yMyO3 (M=Mg2+, Ga3+). Sci. Rep., 2015, 5: 12699-1-11.
|
[23] |
JO W, SCHAAB S, SAPPER E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3. J. Appl. Phys., 2011, 110(7): 074106-1-10.
|
[24] |
SIMONS H, GLAUM J, DANIELS J E, et al. Domain fragmentation during cyclic fatigue in 94%(Bi1/2Na1/2)TiO3 -6%BaTiO3. J. Appl. Phys., 2012, 112(4): 044101-1-6.
|